summaryrefslogtreecommitdiffstats
path: root/src/parameters.cpp
blob: fdcefd1efb430ba9bd07cf302b49490fb6ab1862 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// 凡无特殊说明的函数,全部返回弧度制

#include "parameters.h"
#include "calendar.h"
#include <utility>
using namespace std;

void radToDMS(const char *message, int lowerBound, int upperBound,
              double radians) {
    // Convert radians to degrees
    double degrees = radians * 180.0 / M_PI;

    while (degrees < lowerBound)
        degrees += (upperBound - lowerBound);
    while (degrees >= upperBound)
        degrees -= (upperBound - lowerBound);

    bool flag = degrees < 0;
    if (flag)
        degrees = -degrees;
    // Calculate degrees, minutes, and seconds
    int deg = static_cast<int>(degrees);
    double min_sec = (degrees - deg) * 60.0;
    int min = static_cast<int>(min_sec);
    double sec = (min_sec - min) * 60.0;

    // Output the result
    printf("%s: %c%d°%d'%06.3f''\n", message, flag ? '-' : ' ', deg, min, sec);
}

// 计算地球日心黄经
double parameter::get_longitude(vector<double> l, double t) {
    double L = l[0];
    for (int i = 1; i < l.size(); i++) {
        L += l[i] * pow(t, i);
    }
    //返回弧度制,太阳地心黄经=地球日心黄经+180°
    return L + M_PI;
}

// 计算地球日心黄纬
double parameter::get_latitude(vector<double> b, double t) {
    double B = b[0];
    for (int i = 1; i < b.size(); i++) {
        B += b[i] * pow(t, i);
    }
    //地心黄纬=-太阳黄纬
    return -B;
}

// 计算地日距离,单位为天文单位
double parameter::get_R(vector<double> r, double t) {
    double R = r[0];
    for (int i = 1; i < r.size(); i++) {
        R += r[i] * pow(t, i);
    }
    return R;
}

// 转换FK5误差
double parameter::delta_FK5(double L, double B, double T) {
    // L转角度制
    L *= 180 / M_PI;
    //计算L',角度制
    double L_p = L - 1.397 * T - 0.00031 * T * T;
    //计算L',弧度制
    L_p *= M_PI / 180;
    while (L_p < 0)
        L_p += 2 * M_PI;
    while (L_p >= 2 * M_PI)
        L_p -= 2 * M_PI;
    //计算delta_L,单位为角秒
    double delta_L = -0.09033 + 0.03916 * (cos(L_p) + sin(L_p)) * tan(B);
    //转换为弧度制
    delta_L *= M_PI / (180 * 3600);
    return delta_L;
}

//章动有关角,结果均为角度制
vector<double> parameter::get_angle(double T) {
    vector<double> ang;
    //平距角
    ang.push_back(297.85036 + 445267.111480 * T - 0.0019142 * T * T +
                  T * T * T / 189474);
    //日地平近点角
    ang.push_back(357.52772 + 35999.050340 * T - 0.0001603 * T * T -
                  T * T * T / 300000);
    //月球平近点角
    ang.push_back(134.96298 + 477198.867398 * T + 0.0086972 * T * T +
                  T * T * T / 56250);
    //月球纬度参数
    ang.push_back(93.27191 + 483202.017538 * T - 0.0036825 * T * T +
                  T * T * T / 327270);
    //黄道与月球平轨道交点黄经
    ang.push_back(125.04452 - 1934.136261 * T + 0.0020708 * T * T +
                  T * T * T / 450000);
    return ang;
}

//章动修正
double parameter::nutation(double T) {
    vector<double> ang = get_angle(T);
    double sita;
    double s, s1, s2;
    double c, c1, c2;
    double m, n, o, p, q;

    s = c = 0;
    for (int i = 0; i < nutation_size; i++) {
        sita = nutation_parameters[i][0] * ang[0] +
               nutation_parameters[i][1] * ang[1] +
               nutation_parameters[i][2] * ang[2] +
               nutation_parameters[i][3] * ang[3] +
               nutation_parameters[i][4] * ang[4];
        sita *= M_PI / 180;
        s += (nutation_parameters[i][5] + nutation_parameters[i][6] * T) *
             sin(sita);
        // c+=(nutation_parameters[i][7]+nutation_parameters[i][8]*T)*cos(sita);
    }
    // 计算得到的s和c单位0.0001秒,转换为弧度制
    s *= 0.0001;
    s *= M_PI / (180 * 3600);
    return s;
}

//光行差修正
double parameter::aberration(double R) {
    //公式,单位0.0001角秒
    double delta = -20.4898 / R;
    //转换为弧度制
    delta *= M_PI / (180 * 3600);
    return delta;
}

// 获取地日运行参数,L为地球日心黄经,B为地球日心黄纬,R为地日距离
vector<vector<double>> parameter::get_parameters(double t) {
    double l = 0;
    double a, b, c, num_tmp = 0;
    vector<vector<double>> parameters;
    vector<double> tmp;

    //计算L
    tmp.resize(0);
    for (int i = 0; i < L_size; i++) {
        num_tmp = 0;
        for (int j = 0; j < L_length[i]; j++) {
            num_tmp += L[i][j][0] * cos(L[i][j][1] + L[i][j][2] * t);
        }
        tmp.push_back(num_tmp);
    }
    parameters.push_back(tmp);

    //计算B
    tmp.resize(0);
    for (int i = 0; i < B_size; i++) {
        num_tmp = 0;
        for (int j = 0; j < B_length[i]; j++) {
            num_tmp += B[i][j][0] * cos(B[i][j][1] + B[i][j][2] * t);
        }
        tmp.push_back(num_tmp);
    }
    parameters.push_back(tmp);

    //计算R
    tmp.resize(0);
    for (int i = 0; i < R_size; i++) {
        num_tmp = 0;
        for (int j = 0; j < R_length[i]; j++) {
            num_tmp += R[i][j][0] * cos(R[i][j][1] + R[i][j][2] * t);
        }
        tmp.push_back(num_tmp);
    }
    parameters.push_back(tmp);

    /* 最终传参情况:
     * parameters[0]为L系列,用来计算地球日心黄经
     * parameters[1]为B系列,用来计算地球日心黄纬
     * parameters[2]为R系列,用来计算地日距离
     */
    return parameters;
}

// 计算太阳地心黄经,外部调用,返回角度制
pair<double, double> parameter::sun_longitude(double t) {
    //从文件中计算地日运行参数
    vector<vector<double>> p = get_parameters(t);

    //取出各类参数
    vector<double> l = p[0], b = p[1], r = p[2];

    //计算地球日心黄经纬,返回弧度制/天文单位
    double L = get_longitude(l, t);
    double B = get_latitude(b, t);
    double R = get_R(r, t);

    //以下修正需要的都是儒略世纪数而非千年数
    //转FK5误差,返回弧度制
    L += delta_FK5(L, B, 10 * t);
    //章动修正,返回弧度制
    L += nutation(10 * t);
    //光行差修正,返回弧度制
    L += aberration(R);

    // 返回太阳地心黄经和黄纬
    return make_pair(L, -B);
}

// 计算月球地心黄经,外部调用,返回角度制
double parameter::moon_longitude(double t) {
    double T = 10 * t;
    vector<double> angles = get_angle(T);
    double a, b, c, d, moon_longitude_a;

    double L = 218.3164591 + 481267.88134236 * T - 0.0013268 * T * T +
               T * T * T / 538841 - T * T * T * T / 65194000; //月球平黄经
    double EI = 0, sita = 0;
    double E = 1 - 0.002516 * T - 0.0000074 * T * T; //地球离心率

    for (int i = 0; i < moon_size; i++) {
        sita = moon_longitude_parameters[i][0] * angles[0] +
               moon_longitude_parameters[i][1] * angles[1] +
               moon_longitude_parameters[i][2] * angles[2] +
               moon_longitude_parameters[i][3] * angles[3];
        sita *= M_PI / 180;
        EI += moon_longitude_parameters[i][4] * sin(sita) *
              pow(E, fabs(moon_longitude_parameters[i][1]));
    }

    //地外行星影响月球地心黄经修正项
    double a1, a2;
    a1 = 119.75 + 131.849 * T;
    a2 = 53.09 + 479264.290 * T;

    EI += 3958.0 * sin(a1 * M_PI / 180);
    EI += 1962.0 * sin((L - angles[3]) * M_PI / 180);
    EI += 318.0 * sin(a2 * M_PI / 180);

    L += EI / 1000000;
    L += 180 / M_PI * nutation(T); //地球章动修正

    while (L < 0)
        L += 360;
    while (L >= 360)
        L -= 360;
    return L;
}

double parameter::getHourAngle(double julianKiloYear, double longitude,
                               double latitude, double alpha) {
    double T = julianKiloYear * 10;
    double GST = 280.46061837 + 360.98564736629 * 36525 * T +
                 0.000387933 * T * T - T * T * T / 38710000;
    GST *= M_PI / 180;
    return GST + longitude - alpha; // 返回弧度制
}

double parameter::get_epsilon(double T) {
    double epsilon = 23.439291111 - 0.01300416667 * T -
                     (1.638888889e-7) * T * T + (5.036111111e-7) * T * T * T;
    return epsilon * M_PI / 180;
}