diff options
author | 2025-03-08 22:04:20 +0800 | |
---|---|---|
committer | 2025-03-08 22:04:20 +0800 | |
commit | a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a (patch) | |
tree | 84f21bd0bf7071bc5fc7dd989e77d7ceb5476682 /arch/mips/kernel/elf.c | |
download | ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.tar.gz ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.zip |
Initial commit: OpenHarmony-v4.0-ReleaseOpenHarmony-v4.0-Release
Diffstat (limited to 'arch/mips/kernel/elf.c')
-rw-r--r-- | arch/mips/kernel/elf.c | 343 |
1 files changed, 343 insertions, 0 deletions
diff --git a/arch/mips/kernel/elf.c b/arch/mips/kernel/elf.c new file mode 100644 index 000000000..7b045d2a0 --- /dev/null +++ b/arch/mips/kernel/elf.c | |||
@@ -0,0 +1,343 @@ | |||
1 | // SPDX-License-Identifier: GPL-2.0-or-later | ||
2 | /* | ||
3 | * Copyright (C) 2014 Imagination Technologies | ||
4 | * Author: Paul Burton <paul.burton@mips.com> | ||
5 | */ | ||
6 | |||
7 | #include <linux/binfmts.h> | ||
8 | #include <linux/elf.h> | ||
9 | #include <linux/export.h> | ||
10 | #include <linux/sched.h> | ||
11 | |||
12 | #include <asm/cpu-features.h> | ||
13 | #include <asm/cpu-info.h> | ||
14 | |||
15 | #ifdef CONFIG_MIPS_FP_SUPPORT | ||
16 | |||
17 | /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ | ||
18 | bool mips_use_nan_legacy; | ||
19 | bool mips_use_nan_2008; | ||
20 | |||
21 | /* FPU modes */ | ||
22 | enum { | ||
23 | FP_FRE, | ||
24 | FP_FR0, | ||
25 | FP_FR1, | ||
26 | }; | ||
27 | |||
28 | /** | ||
29 | * struct mode_req - ABI FPU mode requirements | ||
30 | * @single: The program being loaded needs an FPU but it will only issue | ||
31 | * single precision instructions meaning that it can execute in | ||
32 | * either FR0 or FR1. | ||
33 | * @soft: The soft(-float) requirement means that the program being | ||
34 | * loaded needs has no FPU dependency at all (i.e. it has no | ||
35 | * FPU instructions). | ||
36 | * @fr1: The program being loaded depends on FPU being in FR=1 mode. | ||
37 | * @frdefault: The program being loaded depends on the default FPU mode. | ||
38 | * That is FR0 for O32 and FR1 for N32/N64. | ||
39 | * @fre: The program being loaded depends on FPU with FRE=1. This mode is | ||
40 | * a bridge which uses FR=1 whilst still being able to maintain | ||
41 | * full compatibility with pre-existing code using the O32 FP32 | ||
42 | * ABI. | ||
43 | * | ||
44 | * More information about the FP ABIs can be found here: | ||
45 | * | ||
46 | * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up | ||
47 | * | ||
48 | */ | ||
49 | |||
50 | struct mode_req { | ||
51 | bool single; | ||
52 | bool soft; | ||
53 | bool fr1; | ||
54 | bool frdefault; | ||
55 | bool fre; | ||
56 | }; | ||
57 | |||
58 | static const struct mode_req fpu_reqs[] = { | ||
59 | [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, | ||
60 | [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, | ||
61 | [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, | ||
62 | [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, | ||
63 | [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, | ||
64 | [MIPS_ABI_FP_XX] = { false, false, true, true, true }, | ||
65 | [MIPS_ABI_FP_64] = { false, false, true, false, false }, | ||
66 | [MIPS_ABI_FP_64A] = { false, false, true, false, true } | ||
67 | }; | ||
68 | |||
69 | /* | ||
70 | * Mode requirements when .MIPS.abiflags is not present in the ELF. | ||
71 | * Not present means that everything is acceptable except FR1. | ||
72 | */ | ||
73 | static struct mode_req none_req = { true, true, false, true, true }; | ||
74 | |||
75 | int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, | ||
76 | bool is_interp, struct arch_elf_state *state) | ||
77 | { | ||
78 | union { | ||
79 | struct elf32_hdr e32; | ||
80 | struct elf64_hdr e64; | ||
81 | } *ehdr = _ehdr; | ||
82 | struct elf32_phdr *phdr32 = _phdr; | ||
83 | struct elf64_phdr *phdr64 = _phdr; | ||
84 | struct mips_elf_abiflags_v0 abiflags; | ||
85 | bool elf32; | ||
86 | u32 flags; | ||
87 | int ret; | ||
88 | loff_t pos; | ||
89 | |||
90 | elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; | ||
91 | flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; | ||
92 | |||
93 | /* Let's see if this is an O32 ELF */ | ||
94 | if (elf32) { | ||
95 | if (flags & EF_MIPS_FP64) { | ||
96 | /* | ||
97 | * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it | ||
98 | * later if needed | ||
99 | */ | ||
100 | if (is_interp) | ||
101 | state->interp_fp_abi = MIPS_ABI_FP_OLD_64; | ||
102 | else | ||
103 | state->fp_abi = MIPS_ABI_FP_OLD_64; | ||
104 | } | ||
105 | if (phdr32->p_type != PT_MIPS_ABIFLAGS) | ||
106 | return 0; | ||
107 | |||
108 | if (phdr32->p_filesz < sizeof(abiflags)) | ||
109 | return -EINVAL; | ||
110 | pos = phdr32->p_offset; | ||
111 | } else { | ||
112 | if (phdr64->p_type != PT_MIPS_ABIFLAGS) | ||
113 | return 0; | ||
114 | if (phdr64->p_filesz < sizeof(abiflags)) | ||
115 | return -EINVAL; | ||
116 | pos = phdr64->p_offset; | ||
117 | } | ||
118 | |||
119 | ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos); | ||
120 | if (ret < 0) | ||
121 | return ret; | ||
122 | if (ret != sizeof(abiflags)) | ||
123 | return -EIO; | ||
124 | |||
125 | /* Record the required FP ABIs for use by mips_check_elf */ | ||
126 | if (is_interp) | ||
127 | state->interp_fp_abi = abiflags.fp_abi; | ||
128 | else | ||
129 | state->fp_abi = abiflags.fp_abi; | ||
130 | |||
131 | return 0; | ||
132 | } | ||
133 | |||
134 | int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, | ||
135 | struct arch_elf_state *state) | ||
136 | { | ||
137 | union { | ||
138 | struct elf32_hdr e32; | ||
139 | struct elf64_hdr e64; | ||
140 | } *ehdr = _ehdr; | ||
141 | union { | ||
142 | struct elf32_hdr e32; | ||
143 | struct elf64_hdr e64; | ||
144 | } *iehdr = _interp_ehdr; | ||
145 | struct mode_req prog_req, interp_req; | ||
146 | int fp_abi, interp_fp_abi, abi0, abi1, max_abi; | ||
147 | bool elf32; | ||
148 | u32 flags; | ||
149 | |||
150 | elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; | ||
151 | flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; | ||
152 | |||
153 | /* | ||
154 | * Determine the NaN personality, reject the binary if not allowed. | ||
155 | * Also ensure that any interpreter matches the executable. | ||
156 | */ | ||
157 | if (flags & EF_MIPS_NAN2008) { | ||
158 | if (mips_use_nan_2008) | ||
159 | state->nan_2008 = 1; | ||
160 | else | ||
161 | return -ENOEXEC; | ||
162 | } else { | ||
163 | if (mips_use_nan_legacy) | ||
164 | state->nan_2008 = 0; | ||
165 | else | ||
166 | return -ENOEXEC; | ||
167 | } | ||
168 | if (has_interpreter) { | ||
169 | bool ielf32; | ||
170 | u32 iflags; | ||
171 | |||
172 | ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; | ||
173 | iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; | ||
174 | |||
175 | if ((flags ^ iflags) & EF_MIPS_NAN2008) | ||
176 | return -ELIBBAD; | ||
177 | } | ||
178 | |||
179 | if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) | ||
180 | return 0; | ||
181 | |||
182 | fp_abi = state->fp_abi; | ||
183 | |||
184 | if (has_interpreter) { | ||
185 | interp_fp_abi = state->interp_fp_abi; | ||
186 | |||
187 | abi0 = min(fp_abi, interp_fp_abi); | ||
188 | abi1 = max(fp_abi, interp_fp_abi); | ||
189 | } else { | ||
190 | abi0 = abi1 = fp_abi; | ||
191 | } | ||
192 | |||
193 | if (elf32 && !(flags & EF_MIPS_ABI2)) { | ||
194 | /* Default to a mode capable of running code expecting FR=0 */ | ||
195 | state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; | ||
196 | |||
197 | /* Allow all ABIs we know about */ | ||
198 | max_abi = MIPS_ABI_FP_64A; | ||
199 | } else { | ||
200 | /* MIPS64 code always uses FR=1, thus the default is easy */ | ||
201 | state->overall_fp_mode = FP_FR1; | ||
202 | |||
203 | /* Disallow access to the various FPXX & FP64 ABIs */ | ||
204 | max_abi = MIPS_ABI_FP_SOFT; | ||
205 | } | ||
206 | |||
207 | if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || | ||
208 | (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) | ||
209 | return -ELIBBAD; | ||
210 | |||
211 | /* It's time to determine the FPU mode requirements */ | ||
212 | prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; | ||
213 | interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; | ||
214 | |||
215 | /* | ||
216 | * Check whether the program's and interp's ABIs have a matching FPU | ||
217 | * mode requirement. | ||
218 | */ | ||
219 | prog_req.single = interp_req.single && prog_req.single; | ||
220 | prog_req.soft = interp_req.soft && prog_req.soft; | ||
221 | prog_req.fr1 = interp_req.fr1 && prog_req.fr1; | ||
222 | prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; | ||
223 | prog_req.fre = interp_req.fre && prog_req.fre; | ||
224 | |||
225 | /* | ||
226 | * Determine the desired FPU mode | ||
227 | * | ||
228 | * Decision making: | ||
229 | * | ||
230 | * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This | ||
231 | * means that we have a combination of program and interpreter | ||
232 | * that inherently require the hybrid FP mode. | ||
233 | * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or | ||
234 | * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU | ||
235 | * instructions so we don't care about the mode. We will simply use | ||
236 | * the one preferred by the hardware. In fpxx case, that ABI can | ||
237 | * handle both FR=1 and FR=0, so, again, we simply choose the one | ||
238 | * preferred by the hardware. Next, if we only use single-precision | ||
239 | * FPU instructions, and the default ABI FPU mode is not good | ||
240 | * (ie single + any ABI combination), we set again the FPU mode to the | ||
241 | * one is preferred by the hardware. Next, if we know that the code | ||
242 | * will only use single-precision instructions, shown by single being | ||
243 | * true but frdefault being false, then we again set the FPU mode to | ||
244 | * the one that is preferred by the hardware. | ||
245 | * - We want FP_FR1 if that's the only matching mode and the default one | ||
246 | * is not good. | ||
247 | * - Return with -ELIBADD if we can't find a matching FPU mode. | ||
248 | */ | ||
249 | if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) | ||
250 | state->overall_fp_mode = FP_FRE; | ||
251 | else if ((prog_req.fr1 && prog_req.frdefault) || | ||
252 | (prog_req.single && !prog_req.frdefault)) | ||
253 | /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ | ||
254 | state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) && | ||
255 | cpu_has_mips_r2_r6) ? | ||
256 | FP_FR1 : FP_FR0; | ||
257 | else if (prog_req.fr1) | ||
258 | state->overall_fp_mode = FP_FR1; | ||
259 | else if (!prog_req.fre && !prog_req.frdefault && | ||
260 | !prog_req.fr1 && !prog_req.single && !prog_req.soft) | ||
261 | return -ELIBBAD; | ||
262 | |||
263 | return 0; | ||
264 | } | ||
265 | |||
266 | static inline void set_thread_fp_mode(int hybrid, int regs32) | ||
267 | { | ||
268 | if (hybrid) | ||
269 | set_thread_flag(TIF_HYBRID_FPREGS); | ||
270 | else | ||
271 | clear_thread_flag(TIF_HYBRID_FPREGS); | ||
272 | if (regs32) | ||
273 | set_thread_flag(TIF_32BIT_FPREGS); | ||
274 | else | ||
275 | clear_thread_flag(TIF_32BIT_FPREGS); | ||
276 | } | ||
277 | |||
278 | void mips_set_personality_fp(struct arch_elf_state *state) | ||
279 | { | ||
280 | /* | ||
281 | * This function is only ever called for O32 ELFs so we should | ||
282 | * not be worried about N32/N64 binaries. | ||
283 | */ | ||
284 | |||
285 | if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) | ||
286 | return; | ||
287 | |||
288 | switch (state->overall_fp_mode) { | ||
289 | case FP_FRE: | ||
290 | set_thread_fp_mode(1, 0); | ||
291 | break; | ||
292 | case FP_FR0: | ||
293 | set_thread_fp_mode(0, 1); | ||
294 | break; | ||
295 | case FP_FR1: | ||
296 | set_thread_fp_mode(0, 0); | ||
297 | break; | ||
298 | default: | ||
299 | BUG(); | ||
300 | } | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode | ||
305 | * in FCSR according to the ELF NaN personality. | ||
306 | */ | ||
307 | void mips_set_personality_nan(struct arch_elf_state *state) | ||
308 | { | ||
309 | struct cpuinfo_mips *c = &boot_cpu_data; | ||
310 | struct task_struct *t = current; | ||
311 | |||
312 | t->thread.fpu.fcr31 = c->fpu_csr31; | ||
313 | switch (state->nan_2008) { | ||
314 | case 0: | ||
315 | break; | ||
316 | case 1: | ||
317 | if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) | ||
318 | t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; | ||
319 | if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) | ||
320 | t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; | ||
321 | break; | ||
322 | default: | ||
323 | BUG(); | ||
324 | } | ||
325 | } | ||
326 | |||
327 | #endif /* CONFIG_MIPS_FP_SUPPORT */ | ||
328 | |||
329 | int mips_elf_read_implies_exec(void *elf_ex, int exstack) | ||
330 | { | ||
331 | if (exstack != EXSTACK_DISABLE_X) { | ||
332 | /* The binary doesn't request a non-executable stack */ | ||
333 | return 1; | ||
334 | } | ||
335 | |||
336 | if (!cpu_has_rixi) { | ||
337 | /* The CPU doesn't support non-executable memory */ | ||
338 | return 1; | ||
339 | } | ||
340 | |||
341 | return 0; | ||
342 | } | ||
343 | EXPORT_SYMBOL(mips_elf_read_implies_exec); | ||