diff options
author | 2025-03-08 22:04:20 +0800 | |
---|---|---|
committer | 2025-03-08 22:04:20 +0800 | |
commit | a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a (patch) | |
tree | 84f21bd0bf7071bc5fc7dd989e77d7ceb5476682 /arch/mips/kernel/smp.c | |
download | ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.tar.gz ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.zip |
Initial commit: OpenHarmony-v4.0-ReleaseOpenHarmony-v4.0-Release
Diffstat (limited to 'arch/mips/kernel/smp.c')
-rw-r--r-- | arch/mips/kernel/smp.c | 721 |
1 files changed, 721 insertions, 0 deletions
diff --git a/arch/mips/kernel/smp.c b/arch/mips/kernel/smp.c new file mode 100644 index 000000000..14db66dbc --- /dev/null +++ b/arch/mips/kernel/smp.c | |||
@@ -0,0 +1,721 @@ | |||
1 | // SPDX-License-Identifier: GPL-2.0-or-later | ||
2 | /* | ||
3 | * | ||
4 | * Copyright (C) 2000, 2001 Kanoj Sarcar | ||
5 | * Copyright (C) 2000, 2001 Ralf Baechle | ||
6 | * Copyright (C) 2000, 2001 Silicon Graphics, Inc. | ||
7 | * Copyright (C) 2000, 2001, 2003 Broadcom Corporation | ||
8 | */ | ||
9 | #include <linux/cache.h> | ||
10 | #include <linux/delay.h> | ||
11 | #include <linux/init.h> | ||
12 | #include <linux/interrupt.h> | ||
13 | #include <linux/smp.h> | ||
14 | #include <linux/spinlock.h> | ||
15 | #include <linux/threads.h> | ||
16 | #include <linux/export.h> | ||
17 | #include <linux/time.h> | ||
18 | #include <linux/timex.h> | ||
19 | #include <linux/sched/mm.h> | ||
20 | #include <linux/cpumask.h> | ||
21 | #include <linux/cpu.h> | ||
22 | #include <linux/err.h> | ||
23 | #include <linux/ftrace.h> | ||
24 | #include <linux/irqdomain.h> | ||
25 | #include <linux/of.h> | ||
26 | #include <linux/of_irq.h> | ||
27 | |||
28 | #include <linux/atomic.h> | ||
29 | #include <asm/cpu.h> | ||
30 | #include <asm/ginvt.h> | ||
31 | #include <asm/processor.h> | ||
32 | #include <asm/idle.h> | ||
33 | #include <asm/r4k-timer.h> | ||
34 | #include <asm/mips-cps.h> | ||
35 | #include <asm/mmu_context.h> | ||
36 | #include <asm/time.h> | ||
37 | #include <asm/setup.h> | ||
38 | #include <asm/maar.h> | ||
39 | |||
40 | int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */ | ||
41 | EXPORT_SYMBOL(__cpu_number_map); | ||
42 | |||
43 | int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ | ||
44 | EXPORT_SYMBOL(__cpu_logical_map); | ||
45 | |||
46 | /* Number of TCs (or siblings in Intel speak) per CPU core */ | ||
47 | int smp_num_siblings = 1; | ||
48 | EXPORT_SYMBOL(smp_num_siblings); | ||
49 | |||
50 | /* representing the TCs (or siblings in Intel speak) of each logical CPU */ | ||
51 | cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; | ||
52 | EXPORT_SYMBOL(cpu_sibling_map); | ||
53 | |||
54 | /* representing the core map of multi-core chips of each logical CPU */ | ||
55 | cpumask_t cpu_core_map[NR_CPUS] __read_mostly; | ||
56 | EXPORT_SYMBOL(cpu_core_map); | ||
57 | |||
58 | static DECLARE_COMPLETION(cpu_starting); | ||
59 | static DECLARE_COMPLETION(cpu_running); | ||
60 | |||
61 | /* | ||
62 | * A logcal cpu mask containing only one VPE per core to | ||
63 | * reduce the number of IPIs on large MT systems. | ||
64 | */ | ||
65 | cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; | ||
66 | EXPORT_SYMBOL(cpu_foreign_map); | ||
67 | |||
68 | /* representing cpus for which sibling maps can be computed */ | ||
69 | static cpumask_t cpu_sibling_setup_map; | ||
70 | |||
71 | /* representing cpus for which core maps can be computed */ | ||
72 | static cpumask_t cpu_core_setup_map; | ||
73 | |||
74 | cpumask_t cpu_coherent_mask; | ||
75 | |||
76 | #ifdef CONFIG_GENERIC_IRQ_IPI | ||
77 | static struct irq_desc *call_desc; | ||
78 | static struct irq_desc *sched_desc; | ||
79 | #endif | ||
80 | |||
81 | static inline void set_cpu_sibling_map(int cpu) | ||
82 | { | ||
83 | int i; | ||
84 | |||
85 | cpumask_set_cpu(cpu, &cpu_sibling_setup_map); | ||
86 | |||
87 | if (smp_num_siblings > 1) { | ||
88 | for_each_cpu(i, &cpu_sibling_setup_map) { | ||
89 | if (cpus_are_siblings(cpu, i)) { | ||
90 | cpumask_set_cpu(i, &cpu_sibling_map[cpu]); | ||
91 | cpumask_set_cpu(cpu, &cpu_sibling_map[i]); | ||
92 | } | ||
93 | } | ||
94 | } else | ||
95 | cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); | ||
96 | } | ||
97 | |||
98 | static inline void set_cpu_core_map(int cpu) | ||
99 | { | ||
100 | int i; | ||
101 | |||
102 | cpumask_set_cpu(cpu, &cpu_core_setup_map); | ||
103 | |||
104 | for_each_cpu(i, &cpu_core_setup_map) { | ||
105 | if (cpu_data[cpu].package == cpu_data[i].package) { | ||
106 | cpumask_set_cpu(i, &cpu_core_map[cpu]); | ||
107 | cpumask_set_cpu(cpu, &cpu_core_map[i]); | ||
108 | } | ||
109 | } | ||
110 | } | ||
111 | |||
112 | /* | ||
113 | * Calculate a new cpu_foreign_map mask whenever a | ||
114 | * new cpu appears or disappears. | ||
115 | */ | ||
116 | void calculate_cpu_foreign_map(void) | ||
117 | { | ||
118 | int i, k, core_present; | ||
119 | cpumask_t temp_foreign_map; | ||
120 | |||
121 | /* Re-calculate the mask */ | ||
122 | cpumask_clear(&temp_foreign_map); | ||
123 | for_each_online_cpu(i) { | ||
124 | core_present = 0; | ||
125 | for_each_cpu(k, &temp_foreign_map) | ||
126 | if (cpus_are_siblings(i, k)) | ||
127 | core_present = 1; | ||
128 | if (!core_present) | ||
129 | cpumask_set_cpu(i, &temp_foreign_map); | ||
130 | } | ||
131 | |||
132 | for_each_online_cpu(i) | ||
133 | cpumask_andnot(&cpu_foreign_map[i], | ||
134 | &temp_foreign_map, &cpu_sibling_map[i]); | ||
135 | } | ||
136 | |||
137 | const struct plat_smp_ops *mp_ops; | ||
138 | EXPORT_SYMBOL(mp_ops); | ||
139 | |||
140 | void register_smp_ops(const struct plat_smp_ops *ops) | ||
141 | { | ||
142 | if (mp_ops) | ||
143 | printk(KERN_WARNING "Overriding previously set SMP ops\n"); | ||
144 | |||
145 | mp_ops = ops; | ||
146 | } | ||
147 | |||
148 | #ifdef CONFIG_GENERIC_IRQ_IPI | ||
149 | void mips_smp_send_ipi_single(int cpu, unsigned int action) | ||
150 | { | ||
151 | mips_smp_send_ipi_mask(cpumask_of(cpu), action); | ||
152 | } | ||
153 | |||
154 | void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) | ||
155 | { | ||
156 | unsigned long flags; | ||
157 | unsigned int core; | ||
158 | int cpu; | ||
159 | |||
160 | local_irq_save(flags); | ||
161 | |||
162 | switch (action) { | ||
163 | case SMP_CALL_FUNCTION: | ||
164 | __ipi_send_mask(call_desc, mask); | ||
165 | break; | ||
166 | |||
167 | case SMP_RESCHEDULE_YOURSELF: | ||
168 | __ipi_send_mask(sched_desc, mask); | ||
169 | break; | ||
170 | |||
171 | default: | ||
172 | BUG(); | ||
173 | } | ||
174 | |||
175 | if (mips_cpc_present()) { | ||
176 | for_each_cpu(cpu, mask) { | ||
177 | if (cpus_are_siblings(cpu, smp_processor_id())) | ||
178 | continue; | ||
179 | |||
180 | core = cpu_core(&cpu_data[cpu]); | ||
181 | |||
182 | while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { | ||
183 | mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); | ||
184 | mips_cpc_lock_other(core); | ||
185 | write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); | ||
186 | mips_cpc_unlock_other(); | ||
187 | mips_cm_unlock_other(); | ||
188 | } | ||
189 | } | ||
190 | } | ||
191 | |||
192 | local_irq_restore(flags); | ||
193 | } | ||
194 | |||
195 | |||
196 | static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) | ||
197 | { | ||
198 | scheduler_ipi(); | ||
199 | |||
200 | return IRQ_HANDLED; | ||
201 | } | ||
202 | |||
203 | static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) | ||
204 | { | ||
205 | generic_smp_call_function_interrupt(); | ||
206 | |||
207 | return IRQ_HANDLED; | ||
208 | } | ||
209 | |||
210 | static void smp_ipi_init_one(unsigned int virq, const char *name, | ||
211 | irq_handler_t handler) | ||
212 | { | ||
213 | int ret; | ||
214 | |||
215 | irq_set_handler(virq, handle_percpu_irq); | ||
216 | ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL); | ||
217 | BUG_ON(ret); | ||
218 | } | ||
219 | |||
220 | static unsigned int call_virq, sched_virq; | ||
221 | |||
222 | int mips_smp_ipi_allocate(const struct cpumask *mask) | ||
223 | { | ||
224 | int virq; | ||
225 | struct irq_domain *ipidomain; | ||
226 | struct device_node *node; | ||
227 | |||
228 | node = of_irq_find_parent(of_root); | ||
229 | ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); | ||
230 | |||
231 | /* | ||
232 | * Some platforms have half DT setup. So if we found irq node but | ||
233 | * didn't find an ipidomain, try to search for one that is not in the | ||
234 | * DT. | ||
235 | */ | ||
236 | if (node && !ipidomain) | ||
237 | ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); | ||
238 | |||
239 | /* | ||
240 | * There are systems which use IPI IRQ domains, but only have one | ||
241 | * registered when some runtime condition is met. For example a Malta | ||
242 | * kernel may include support for GIC & CPU interrupt controller IPI | ||
243 | * IRQ domains, but if run on a system with no GIC & no MT ASE then | ||
244 | * neither will be supported or registered. | ||
245 | * | ||
246 | * We only have a problem if we're actually using multiple CPUs so fail | ||
247 | * loudly if that is the case. Otherwise simply return, skipping IPI | ||
248 | * setup, if we're running with only a single CPU. | ||
249 | */ | ||
250 | if (!ipidomain) { | ||
251 | BUG_ON(num_present_cpus() > 1); | ||
252 | return 0; | ||
253 | } | ||
254 | |||
255 | virq = irq_reserve_ipi(ipidomain, mask); | ||
256 | BUG_ON(!virq); | ||
257 | if (!call_virq) | ||
258 | call_virq = virq; | ||
259 | |||
260 | virq = irq_reserve_ipi(ipidomain, mask); | ||
261 | BUG_ON(!virq); | ||
262 | if (!sched_virq) | ||
263 | sched_virq = virq; | ||
264 | |||
265 | if (irq_domain_is_ipi_per_cpu(ipidomain)) { | ||
266 | int cpu; | ||
267 | |||
268 | for_each_cpu(cpu, mask) { | ||
269 | smp_ipi_init_one(call_virq + cpu, "IPI call", | ||
270 | ipi_call_interrupt); | ||
271 | smp_ipi_init_one(sched_virq + cpu, "IPI resched", | ||
272 | ipi_resched_interrupt); | ||
273 | } | ||
274 | } else { | ||
275 | smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt); | ||
276 | smp_ipi_init_one(sched_virq, "IPI resched", | ||
277 | ipi_resched_interrupt); | ||
278 | } | ||
279 | |||
280 | return 0; | ||
281 | } | ||
282 | |||
283 | int mips_smp_ipi_free(const struct cpumask *mask) | ||
284 | { | ||
285 | struct irq_domain *ipidomain; | ||
286 | struct device_node *node; | ||
287 | |||
288 | node = of_irq_find_parent(of_root); | ||
289 | ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); | ||
290 | |||
291 | /* | ||
292 | * Some platforms have half DT setup. So if we found irq node but | ||
293 | * didn't find an ipidomain, try to search for one that is not in the | ||
294 | * DT. | ||
295 | */ | ||
296 | if (node && !ipidomain) | ||
297 | ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); | ||
298 | |||
299 | BUG_ON(!ipidomain); | ||
300 | |||
301 | if (irq_domain_is_ipi_per_cpu(ipidomain)) { | ||
302 | int cpu; | ||
303 | |||
304 | for_each_cpu(cpu, mask) { | ||
305 | free_irq(call_virq + cpu, NULL); | ||
306 | free_irq(sched_virq + cpu, NULL); | ||
307 | } | ||
308 | } | ||
309 | irq_destroy_ipi(call_virq, mask); | ||
310 | irq_destroy_ipi(sched_virq, mask); | ||
311 | return 0; | ||
312 | } | ||
313 | |||
314 | |||
315 | static int __init mips_smp_ipi_init(void) | ||
316 | { | ||
317 | if (num_possible_cpus() == 1) | ||
318 | return 0; | ||
319 | |||
320 | mips_smp_ipi_allocate(cpu_possible_mask); | ||
321 | |||
322 | call_desc = irq_to_desc(call_virq); | ||
323 | sched_desc = irq_to_desc(sched_virq); | ||
324 | |||
325 | return 0; | ||
326 | } | ||
327 | early_initcall(mips_smp_ipi_init); | ||
328 | #endif | ||
329 | |||
330 | /* | ||
331 | * First C code run on the secondary CPUs after being started up by | ||
332 | * the master. | ||
333 | */ | ||
334 | asmlinkage void start_secondary(void) | ||
335 | { | ||
336 | unsigned int cpu; | ||
337 | |||
338 | cpu_probe(); | ||
339 | per_cpu_trap_init(false); | ||
340 | mips_clockevent_init(); | ||
341 | mp_ops->init_secondary(); | ||
342 | cpu_report(); | ||
343 | maar_init(); | ||
344 | |||
345 | /* | ||
346 | * XXX parity protection should be folded in here when it's converted | ||
347 | * to an option instead of something based on .cputype | ||
348 | */ | ||
349 | |||
350 | calibrate_delay(); | ||
351 | cpu = smp_processor_id(); | ||
352 | cpu_data[cpu].udelay_val = loops_per_jiffy; | ||
353 | |||
354 | set_cpu_sibling_map(cpu); | ||
355 | set_cpu_core_map(cpu); | ||
356 | |||
357 | cpumask_set_cpu(cpu, &cpu_coherent_mask); | ||
358 | notify_cpu_starting(cpu); | ||
359 | |||
360 | /* Notify boot CPU that we're starting & ready to sync counters */ | ||
361 | complete(&cpu_starting); | ||
362 | |||
363 | synchronise_count_slave(cpu); | ||
364 | |||
365 | /* The CPU is running and counters synchronised, now mark it online */ | ||
366 | set_cpu_online(cpu, true); | ||
367 | |||
368 | calculate_cpu_foreign_map(); | ||
369 | |||
370 | /* | ||
371 | * Notify boot CPU that we're up & online and it can safely return | ||
372 | * from __cpu_up | ||
373 | */ | ||
374 | complete(&cpu_running); | ||
375 | |||
376 | /* | ||
377 | * irq will be enabled in ->smp_finish(), enabling it too early | ||
378 | * is dangerous. | ||
379 | */ | ||
380 | WARN_ON_ONCE(!irqs_disabled()); | ||
381 | mp_ops->smp_finish(); | ||
382 | |||
383 | cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); | ||
384 | } | ||
385 | |||
386 | static void stop_this_cpu(void *dummy) | ||
387 | { | ||
388 | /* | ||
389 | * Remove this CPU: | ||
390 | */ | ||
391 | |||
392 | set_cpu_online(smp_processor_id(), false); | ||
393 | calculate_cpu_foreign_map(); | ||
394 | local_irq_disable(); | ||
395 | while (1); | ||
396 | } | ||
397 | |||
398 | void smp_send_stop(void) | ||
399 | { | ||
400 | smp_call_function(stop_this_cpu, NULL, 0); | ||
401 | } | ||
402 | |||
403 | void __init smp_cpus_done(unsigned int max_cpus) | ||
404 | { | ||
405 | } | ||
406 | |||
407 | /* called from main before smp_init() */ | ||
408 | void __init smp_prepare_cpus(unsigned int max_cpus) | ||
409 | { | ||
410 | init_new_context(current, &init_mm); | ||
411 | current_thread_info()->cpu = 0; | ||
412 | mp_ops->prepare_cpus(max_cpus); | ||
413 | set_cpu_sibling_map(0); | ||
414 | set_cpu_core_map(0); | ||
415 | calculate_cpu_foreign_map(); | ||
416 | #ifndef CONFIG_HOTPLUG_CPU | ||
417 | init_cpu_present(cpu_possible_mask); | ||
418 | #endif | ||
419 | cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); | ||
420 | } | ||
421 | |||
422 | /* preload SMP state for boot cpu */ | ||
423 | void smp_prepare_boot_cpu(void) | ||
424 | { | ||
425 | if (mp_ops->prepare_boot_cpu) | ||
426 | mp_ops->prepare_boot_cpu(); | ||
427 | set_cpu_possible(0, true); | ||
428 | set_cpu_online(0, true); | ||
429 | } | ||
430 | |||
431 | int __cpu_up(unsigned int cpu, struct task_struct *tidle) | ||
432 | { | ||
433 | int err; | ||
434 | |||
435 | err = mp_ops->boot_secondary(cpu, tidle); | ||
436 | if (err) | ||
437 | return err; | ||
438 | |||
439 | /* Wait for CPU to start and be ready to sync counters */ | ||
440 | if (!wait_for_completion_timeout(&cpu_starting, | ||
441 | msecs_to_jiffies(1000))) { | ||
442 | pr_crit("CPU%u: failed to start\n", cpu); | ||
443 | return -EIO; | ||
444 | } | ||
445 | |||
446 | synchronise_count_master(cpu); | ||
447 | |||
448 | /* Wait for CPU to finish startup & mark itself online before return */ | ||
449 | wait_for_completion(&cpu_running); | ||
450 | return 0; | ||
451 | } | ||
452 | |||
453 | /* Not really SMP stuff ... */ | ||
454 | int setup_profiling_timer(unsigned int multiplier) | ||
455 | { | ||
456 | return 0; | ||
457 | } | ||
458 | |||
459 | static void flush_tlb_all_ipi(void *info) | ||
460 | { | ||
461 | local_flush_tlb_all(); | ||
462 | } | ||
463 | |||
464 | void flush_tlb_all(void) | ||
465 | { | ||
466 | if (cpu_has_mmid) { | ||
467 | htw_stop(); | ||
468 | ginvt_full(); | ||
469 | sync_ginv(); | ||
470 | instruction_hazard(); | ||
471 | htw_start(); | ||
472 | return; | ||
473 | } | ||
474 | |||
475 | on_each_cpu(flush_tlb_all_ipi, NULL, 1); | ||
476 | } | ||
477 | |||
478 | static void flush_tlb_mm_ipi(void *mm) | ||
479 | { | ||
480 | drop_mmu_context((struct mm_struct *)mm); | ||
481 | } | ||
482 | |||
483 | /* | ||
484 | * Special Variant of smp_call_function for use by TLB functions: | ||
485 | * | ||
486 | * o No return value | ||
487 | * o collapses to normal function call on UP kernels | ||
488 | * o collapses to normal function call on systems with a single shared | ||
489 | * primary cache. | ||
490 | */ | ||
491 | static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) | ||
492 | { | ||
493 | smp_call_function(func, info, 1); | ||
494 | } | ||
495 | |||
496 | static inline void smp_on_each_tlb(void (*func) (void *info), void *info) | ||
497 | { | ||
498 | preempt_disable(); | ||
499 | |||
500 | smp_on_other_tlbs(func, info); | ||
501 | func(info); | ||
502 | |||
503 | preempt_enable(); | ||
504 | } | ||
505 | |||
506 | /* | ||
507 | * The following tlb flush calls are invoked when old translations are | ||
508 | * being torn down, or pte attributes are changing. For single threaded | ||
509 | * address spaces, a new context is obtained on the current cpu, and tlb | ||
510 | * context on other cpus are invalidated to force a new context allocation | ||
511 | * at switch_mm time, should the mm ever be used on other cpus. For | ||
512 | * multithreaded address spaces, intercpu interrupts have to be sent. | ||
513 | * Another case where intercpu interrupts are required is when the target | ||
514 | * mm might be active on another cpu (eg debuggers doing the flushes on | ||
515 | * behalf of debugees, kswapd stealing pages from another process etc). | ||
516 | * Kanoj 07/00. | ||
517 | */ | ||
518 | |||
519 | void flush_tlb_mm(struct mm_struct *mm) | ||
520 | { | ||
521 | preempt_disable(); | ||
522 | |||
523 | if (cpu_has_mmid) { | ||
524 | /* | ||
525 | * No need to worry about other CPUs - the ginvt in | ||
526 | * drop_mmu_context() will be globalized. | ||
527 | */ | ||
528 | } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { | ||
529 | smp_on_other_tlbs(flush_tlb_mm_ipi, mm); | ||
530 | } else { | ||
531 | unsigned int cpu; | ||
532 | |||
533 | for_each_online_cpu(cpu) { | ||
534 | if (cpu != smp_processor_id() && cpu_context(cpu, mm)) | ||
535 | set_cpu_context(cpu, mm, 0); | ||
536 | } | ||
537 | } | ||
538 | drop_mmu_context(mm); | ||
539 | |||
540 | preempt_enable(); | ||
541 | } | ||
542 | |||
543 | struct flush_tlb_data { | ||
544 | struct vm_area_struct *vma; | ||
545 | unsigned long addr1; | ||
546 | unsigned long addr2; | ||
547 | }; | ||
548 | |||
549 | static void flush_tlb_range_ipi(void *info) | ||
550 | { | ||
551 | struct flush_tlb_data *fd = info; | ||
552 | |||
553 | local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); | ||
554 | } | ||
555 | |||
556 | void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) | ||
557 | { | ||
558 | struct mm_struct *mm = vma->vm_mm; | ||
559 | unsigned long addr; | ||
560 | u32 old_mmid; | ||
561 | |||
562 | preempt_disable(); | ||
563 | if (cpu_has_mmid) { | ||
564 | htw_stop(); | ||
565 | old_mmid = read_c0_memorymapid(); | ||
566 | write_c0_memorymapid(cpu_asid(0, mm)); | ||
567 | mtc0_tlbw_hazard(); | ||
568 | addr = round_down(start, PAGE_SIZE * 2); | ||
569 | end = round_up(end, PAGE_SIZE * 2); | ||
570 | do { | ||
571 | ginvt_va_mmid(addr); | ||
572 | sync_ginv(); | ||
573 | addr += PAGE_SIZE * 2; | ||
574 | } while (addr < end); | ||
575 | write_c0_memorymapid(old_mmid); | ||
576 | instruction_hazard(); | ||
577 | htw_start(); | ||
578 | } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { | ||
579 | struct flush_tlb_data fd = { | ||
580 | .vma = vma, | ||
581 | .addr1 = start, | ||
582 | .addr2 = end, | ||
583 | }; | ||
584 | |||
585 | smp_on_other_tlbs(flush_tlb_range_ipi, &fd); | ||
586 | local_flush_tlb_range(vma, start, end); | ||
587 | } else { | ||
588 | unsigned int cpu; | ||
589 | int exec = vma->vm_flags & VM_EXEC; | ||
590 | |||
591 | for_each_online_cpu(cpu) { | ||
592 | /* | ||
593 | * flush_cache_range() will only fully flush icache if | ||
594 | * the VMA is executable, otherwise we must invalidate | ||
595 | * ASID without it appearing to has_valid_asid() as if | ||
596 | * mm has been completely unused by that CPU. | ||
597 | */ | ||
598 | if (cpu != smp_processor_id() && cpu_context(cpu, mm)) | ||
599 | set_cpu_context(cpu, mm, !exec); | ||
600 | } | ||
601 | local_flush_tlb_range(vma, start, end); | ||
602 | } | ||
603 | preempt_enable(); | ||
604 | } | ||
605 | |||
606 | static void flush_tlb_kernel_range_ipi(void *info) | ||
607 | { | ||
608 | struct flush_tlb_data *fd = info; | ||
609 | |||
610 | local_flush_tlb_kernel_range(fd->addr1, fd->addr2); | ||
611 | } | ||
612 | |||
613 | void flush_tlb_kernel_range(unsigned long start, unsigned long end) | ||
614 | { | ||
615 | struct flush_tlb_data fd = { | ||
616 | .addr1 = start, | ||
617 | .addr2 = end, | ||
618 | }; | ||
619 | |||
620 | on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); | ||
621 | } | ||
622 | |||
623 | static void flush_tlb_page_ipi(void *info) | ||
624 | { | ||
625 | struct flush_tlb_data *fd = info; | ||
626 | |||
627 | local_flush_tlb_page(fd->vma, fd->addr1); | ||
628 | } | ||
629 | |||
630 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) | ||
631 | { | ||
632 | u32 old_mmid; | ||
633 | |||
634 | preempt_disable(); | ||
635 | if (cpu_has_mmid) { | ||
636 | htw_stop(); | ||
637 | old_mmid = read_c0_memorymapid(); | ||
638 | write_c0_memorymapid(cpu_asid(0, vma->vm_mm)); | ||
639 | mtc0_tlbw_hazard(); | ||
640 | ginvt_va_mmid(page); | ||
641 | sync_ginv(); | ||
642 | write_c0_memorymapid(old_mmid); | ||
643 | instruction_hazard(); | ||
644 | htw_start(); | ||
645 | } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) || | ||
646 | (current->mm != vma->vm_mm)) { | ||
647 | struct flush_tlb_data fd = { | ||
648 | .vma = vma, | ||
649 | .addr1 = page, | ||
650 | }; | ||
651 | |||
652 | smp_on_other_tlbs(flush_tlb_page_ipi, &fd); | ||
653 | local_flush_tlb_page(vma, page); | ||
654 | } else { | ||
655 | unsigned int cpu; | ||
656 | |||
657 | for_each_online_cpu(cpu) { | ||
658 | /* | ||
659 | * flush_cache_page() only does partial flushes, so | ||
660 | * invalidate ASID without it appearing to | ||
661 | * has_valid_asid() as if mm has been completely unused | ||
662 | * by that CPU. | ||
663 | */ | ||
664 | if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) | ||
665 | set_cpu_context(cpu, vma->vm_mm, 1); | ||
666 | } | ||
667 | local_flush_tlb_page(vma, page); | ||
668 | } | ||
669 | preempt_enable(); | ||
670 | } | ||
671 | |||
672 | static void flush_tlb_one_ipi(void *info) | ||
673 | { | ||
674 | unsigned long vaddr = (unsigned long) info; | ||
675 | |||
676 | local_flush_tlb_one(vaddr); | ||
677 | } | ||
678 | |||
679 | void flush_tlb_one(unsigned long vaddr) | ||
680 | { | ||
681 | smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); | ||
682 | } | ||
683 | |||
684 | EXPORT_SYMBOL(flush_tlb_page); | ||
685 | EXPORT_SYMBOL(flush_tlb_one); | ||
686 | |||
687 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST | ||
688 | |||
689 | static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd); | ||
690 | |||
691 | void tick_broadcast(const struct cpumask *mask) | ||
692 | { | ||
693 | call_single_data_t *csd; | ||
694 | int cpu; | ||
695 | |||
696 | for_each_cpu(cpu, mask) { | ||
697 | csd = &per_cpu(tick_broadcast_csd, cpu); | ||
698 | smp_call_function_single_async(cpu, csd); | ||
699 | } | ||
700 | } | ||
701 | |||
702 | static void tick_broadcast_callee(void *info) | ||
703 | { | ||
704 | tick_receive_broadcast(); | ||
705 | } | ||
706 | |||
707 | static int __init tick_broadcast_init(void) | ||
708 | { | ||
709 | call_single_data_t *csd; | ||
710 | int cpu; | ||
711 | |||
712 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | ||
713 | csd = &per_cpu(tick_broadcast_csd, cpu); | ||
714 | csd->func = tick_broadcast_callee; | ||
715 | } | ||
716 | |||
717 | return 0; | ||
718 | } | ||
719 | early_initcall(tick_broadcast_init); | ||
720 | |||
721 | #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ | ||