diff options
author | 2025-03-08 22:04:20 +0800 | |
---|---|---|
committer | 2025-03-08 22:04:20 +0800 | |
commit | a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a (patch) | |
tree | 84f21bd0bf7071bc5fc7dd989e77d7ceb5476682 /arch/mips/kernel/traps.c | |
download | ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.tar.gz ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.zip |
Initial commit: OpenHarmony-v4.0-ReleaseOpenHarmony-v4.0-Release
Diffstat (limited to 'arch/mips/kernel/traps.c')
-rw-r--r-- | arch/mips/kernel/traps.c | 2571 |
1 files changed, 2571 insertions, 0 deletions
diff --git a/arch/mips/kernel/traps.c b/arch/mips/kernel/traps.c new file mode 100644 index 000000000..b1fe4518b --- /dev/null +++ b/arch/mips/kernel/traps.c | |||
@@ -0,0 +1,2571 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle | ||
7 | * Copyright (C) 1995, 1996 Paul M. Antoine | ||
8 | * Copyright (C) 1998 Ulf Carlsson | ||
9 | * Copyright (C) 1999 Silicon Graphics, Inc. | ||
10 | * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com | ||
11 | * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki | ||
12 | * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. | ||
13 | * Copyright (C) 2014, Imagination Technologies Ltd. | ||
14 | */ | ||
15 | #include <linux/bitops.h> | ||
16 | #include <linux/bug.h> | ||
17 | #include <linux/compiler.h> | ||
18 | #include <linux/context_tracking.h> | ||
19 | #include <linux/cpu_pm.h> | ||
20 | #include <linux/kexec.h> | ||
21 | #include <linux/init.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/module.h> | ||
24 | #include <linux/extable.h> | ||
25 | #include <linux/mm.h> | ||
26 | #include <linux/sched/mm.h> | ||
27 | #include <linux/sched/debug.h> | ||
28 | #include <linux/smp.h> | ||
29 | #include <linux/spinlock.h> | ||
30 | #include <linux/kallsyms.h> | ||
31 | #include <linux/memblock.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/ptrace.h> | ||
34 | #include <linux/kgdb.h> | ||
35 | #include <linux/kdebug.h> | ||
36 | #include <linux/kprobes.h> | ||
37 | #include <linux/notifier.h> | ||
38 | #include <linux/kdb.h> | ||
39 | #include <linux/irq.h> | ||
40 | #include <linux/perf_event.h> | ||
41 | |||
42 | #include <asm/addrspace.h> | ||
43 | #include <asm/bootinfo.h> | ||
44 | #include <asm/branch.h> | ||
45 | #include <asm/break.h> | ||
46 | #include <asm/cop2.h> | ||
47 | #include <asm/cpu.h> | ||
48 | #include <asm/cpu-type.h> | ||
49 | #include <asm/dsp.h> | ||
50 | #include <asm/fpu.h> | ||
51 | #include <asm/fpu_emulator.h> | ||
52 | #include <asm/idle.h> | ||
53 | #include <asm/isa-rev.h> | ||
54 | #include <asm/mips-cps.h> | ||
55 | #include <asm/mips-r2-to-r6-emul.h> | ||
56 | #include <asm/mipsregs.h> | ||
57 | #include <asm/mipsmtregs.h> | ||
58 | #include <asm/module.h> | ||
59 | #include <asm/msa.h> | ||
60 | #include <asm/ptrace.h> | ||
61 | #include <asm/sections.h> | ||
62 | #include <asm/siginfo.h> | ||
63 | #include <asm/tlbdebug.h> | ||
64 | #include <asm/traps.h> | ||
65 | #include <linux/uaccess.h> | ||
66 | #include <asm/watch.h> | ||
67 | #include <asm/mmu_context.h> | ||
68 | #include <asm/types.h> | ||
69 | #include <asm/stacktrace.h> | ||
70 | #include <asm/tlbex.h> | ||
71 | #include <asm/uasm.h> | ||
72 | |||
73 | #include <asm/mach-loongson64/cpucfg-emul.h> | ||
74 | |||
75 | extern void check_wait(void); | ||
76 | extern asmlinkage void rollback_handle_int(void); | ||
77 | extern asmlinkage void handle_int(void); | ||
78 | extern asmlinkage void handle_adel(void); | ||
79 | extern asmlinkage void handle_ades(void); | ||
80 | extern asmlinkage void handle_ibe(void); | ||
81 | extern asmlinkage void handle_dbe(void); | ||
82 | extern asmlinkage void handle_sys(void); | ||
83 | extern asmlinkage void handle_bp(void); | ||
84 | extern asmlinkage void handle_ri(void); | ||
85 | extern asmlinkage void handle_ri_rdhwr_tlbp(void); | ||
86 | extern asmlinkage void handle_ri_rdhwr(void); | ||
87 | extern asmlinkage void handle_cpu(void); | ||
88 | extern asmlinkage void handle_ov(void); | ||
89 | extern asmlinkage void handle_tr(void); | ||
90 | extern asmlinkage void handle_msa_fpe(void); | ||
91 | extern asmlinkage void handle_fpe(void); | ||
92 | extern asmlinkage void handle_ftlb(void); | ||
93 | extern asmlinkage void handle_gsexc(void); | ||
94 | extern asmlinkage void handle_msa(void); | ||
95 | extern asmlinkage void handle_mdmx(void); | ||
96 | extern asmlinkage void handle_watch(void); | ||
97 | extern asmlinkage void handle_mt(void); | ||
98 | extern asmlinkage void handle_dsp(void); | ||
99 | extern asmlinkage void handle_mcheck(void); | ||
100 | extern asmlinkage void handle_reserved(void); | ||
101 | extern void tlb_do_page_fault_0(void); | ||
102 | |||
103 | void (*board_be_init)(void); | ||
104 | int (*board_be_handler)(struct pt_regs *regs, int is_fixup); | ||
105 | void (*board_nmi_handler_setup)(void); | ||
106 | void (*board_ejtag_handler_setup)(void); | ||
107 | void (*board_bind_eic_interrupt)(int irq, int regset); | ||
108 | void (*board_ebase_setup)(void); | ||
109 | void(*board_cache_error_setup)(void); | ||
110 | |||
111 | static void show_raw_backtrace(unsigned long reg29, const char *loglvl) | ||
112 | { | ||
113 | unsigned long *sp = (unsigned long *)(reg29 & ~3); | ||
114 | unsigned long addr; | ||
115 | |||
116 | printk("%sCall Trace:", loglvl); | ||
117 | #ifdef CONFIG_KALLSYMS | ||
118 | printk("%s\n", loglvl); | ||
119 | #endif | ||
120 | while (!kstack_end(sp)) { | ||
121 | unsigned long __user *p = | ||
122 | (unsigned long __user *)(unsigned long)sp++; | ||
123 | if (__get_user(addr, p)) { | ||
124 | printk("%s (Bad stack address)", loglvl); | ||
125 | break; | ||
126 | } | ||
127 | if (__kernel_text_address(addr)) | ||
128 | print_ip_sym(loglvl, addr); | ||
129 | } | ||
130 | printk("%s\n", loglvl); | ||
131 | } | ||
132 | |||
133 | #ifdef CONFIG_KALLSYMS | ||
134 | int raw_show_trace; | ||
135 | static int __init set_raw_show_trace(char *str) | ||
136 | { | ||
137 | raw_show_trace = 1; | ||
138 | return 1; | ||
139 | } | ||
140 | __setup("raw_show_trace", set_raw_show_trace); | ||
141 | #endif | ||
142 | |||
143 | static void show_backtrace(struct task_struct *task, const struct pt_regs *regs, | ||
144 | const char *loglvl) | ||
145 | { | ||
146 | unsigned long sp = regs->regs[29]; | ||
147 | unsigned long ra = regs->regs[31]; | ||
148 | unsigned long pc = regs->cp0_epc; | ||
149 | |||
150 | if (!task) | ||
151 | task = current; | ||
152 | |||
153 | if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { | ||
154 | show_raw_backtrace(sp, loglvl); | ||
155 | return; | ||
156 | } | ||
157 | printk("%sCall Trace:\n", loglvl); | ||
158 | do { | ||
159 | print_ip_sym(loglvl, pc); | ||
160 | pc = unwind_stack(task, &sp, pc, &ra); | ||
161 | } while (pc); | ||
162 | pr_cont("\n"); | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * This routine abuses get_user()/put_user() to reference pointers | ||
167 | * with at least a bit of error checking ... | ||
168 | */ | ||
169 | static void show_stacktrace(struct task_struct *task, | ||
170 | const struct pt_regs *regs, const char *loglvl) | ||
171 | { | ||
172 | const int field = 2 * sizeof(unsigned long); | ||
173 | long stackdata; | ||
174 | int i; | ||
175 | unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; | ||
176 | |||
177 | printk("%sStack :", loglvl); | ||
178 | i = 0; | ||
179 | while ((unsigned long) sp & (PAGE_SIZE - 1)) { | ||
180 | if (i && ((i % (64 / field)) == 0)) { | ||
181 | pr_cont("\n"); | ||
182 | printk("%s ", loglvl); | ||
183 | } | ||
184 | if (i > 39) { | ||
185 | pr_cont(" ..."); | ||
186 | break; | ||
187 | } | ||
188 | |||
189 | if (__get_user(stackdata, sp++)) { | ||
190 | pr_cont(" (Bad stack address)"); | ||
191 | break; | ||
192 | } | ||
193 | |||
194 | pr_cont(" %0*lx", field, stackdata); | ||
195 | i++; | ||
196 | } | ||
197 | pr_cont("\n"); | ||
198 | show_backtrace(task, regs, loglvl); | ||
199 | } | ||
200 | |||
201 | void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl) | ||
202 | { | ||
203 | struct pt_regs regs; | ||
204 | mm_segment_t old_fs = get_fs(); | ||
205 | |||
206 | regs.cp0_status = KSU_KERNEL; | ||
207 | if (sp) { | ||
208 | regs.regs[29] = (unsigned long)sp; | ||
209 | regs.regs[31] = 0; | ||
210 | regs.cp0_epc = 0; | ||
211 | } else { | ||
212 | if (task && task != current) { | ||
213 | regs.regs[29] = task->thread.reg29; | ||
214 | regs.regs[31] = 0; | ||
215 | regs.cp0_epc = task->thread.reg31; | ||
216 | } else { | ||
217 | prepare_frametrace(®s); | ||
218 | } | ||
219 | } | ||
220 | /* | ||
221 | * show_stack() deals exclusively with kernel mode, so be sure to access | ||
222 | * the stack in the kernel (not user) address space. | ||
223 | */ | ||
224 | set_fs(KERNEL_DS); | ||
225 | show_stacktrace(task, ®s, loglvl); | ||
226 | set_fs(old_fs); | ||
227 | } | ||
228 | |||
229 | static void show_code(unsigned int __user *pc) | ||
230 | { | ||
231 | long i; | ||
232 | unsigned short __user *pc16 = NULL; | ||
233 | |||
234 | printk("Code:"); | ||
235 | |||
236 | if ((unsigned long)pc & 1) | ||
237 | pc16 = (unsigned short __user *)((unsigned long)pc & ~1); | ||
238 | for(i = -3 ; i < 6 ; i++) { | ||
239 | unsigned int insn; | ||
240 | if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { | ||
241 | pr_cont(" (Bad address in epc)\n"); | ||
242 | break; | ||
243 | } | ||
244 | pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); | ||
245 | } | ||
246 | pr_cont("\n"); | ||
247 | } | ||
248 | |||
249 | static void __show_regs(const struct pt_regs *regs) | ||
250 | { | ||
251 | const int field = 2 * sizeof(unsigned long); | ||
252 | unsigned int cause = regs->cp0_cause; | ||
253 | unsigned int exccode; | ||
254 | int i; | ||
255 | |||
256 | show_regs_print_info(KERN_DEFAULT); | ||
257 | |||
258 | /* | ||
259 | * Saved main processor registers | ||
260 | */ | ||
261 | for (i = 0; i < 32; ) { | ||
262 | if ((i % 4) == 0) | ||
263 | printk("$%2d :", i); | ||
264 | if (i == 0) | ||
265 | pr_cont(" %0*lx", field, 0UL); | ||
266 | else if (i == 26 || i == 27) | ||
267 | pr_cont(" %*s", field, ""); | ||
268 | else | ||
269 | pr_cont(" %0*lx", field, regs->regs[i]); | ||
270 | |||
271 | i++; | ||
272 | if ((i % 4) == 0) | ||
273 | pr_cont("\n"); | ||
274 | } | ||
275 | |||
276 | #ifdef CONFIG_CPU_HAS_SMARTMIPS | ||
277 | printk("Acx : %0*lx\n", field, regs->acx); | ||
278 | #endif | ||
279 | if (MIPS_ISA_REV < 6) { | ||
280 | printk("Hi : %0*lx\n", field, regs->hi); | ||
281 | printk("Lo : %0*lx\n", field, regs->lo); | ||
282 | } | ||
283 | |||
284 | /* | ||
285 | * Saved cp0 registers | ||
286 | */ | ||
287 | printk("epc : %0*lx %pS\n", field, regs->cp0_epc, | ||
288 | (void *) regs->cp0_epc); | ||
289 | printk("ra : %0*lx %pS\n", field, regs->regs[31], | ||
290 | (void *) regs->regs[31]); | ||
291 | |||
292 | printk("Status: %08x ", (uint32_t) regs->cp0_status); | ||
293 | |||
294 | if (cpu_has_3kex) { | ||
295 | if (regs->cp0_status & ST0_KUO) | ||
296 | pr_cont("KUo "); | ||
297 | if (regs->cp0_status & ST0_IEO) | ||
298 | pr_cont("IEo "); | ||
299 | if (regs->cp0_status & ST0_KUP) | ||
300 | pr_cont("KUp "); | ||
301 | if (regs->cp0_status & ST0_IEP) | ||
302 | pr_cont("IEp "); | ||
303 | if (regs->cp0_status & ST0_KUC) | ||
304 | pr_cont("KUc "); | ||
305 | if (regs->cp0_status & ST0_IEC) | ||
306 | pr_cont("IEc "); | ||
307 | } else if (cpu_has_4kex) { | ||
308 | if (regs->cp0_status & ST0_KX) | ||
309 | pr_cont("KX "); | ||
310 | if (regs->cp0_status & ST0_SX) | ||
311 | pr_cont("SX "); | ||
312 | if (regs->cp0_status & ST0_UX) | ||
313 | pr_cont("UX "); | ||
314 | switch (regs->cp0_status & ST0_KSU) { | ||
315 | case KSU_USER: | ||
316 | pr_cont("USER "); | ||
317 | break; | ||
318 | case KSU_SUPERVISOR: | ||
319 | pr_cont("SUPERVISOR "); | ||
320 | break; | ||
321 | case KSU_KERNEL: | ||
322 | pr_cont("KERNEL "); | ||
323 | break; | ||
324 | default: | ||
325 | pr_cont("BAD_MODE "); | ||
326 | break; | ||
327 | } | ||
328 | if (regs->cp0_status & ST0_ERL) | ||
329 | pr_cont("ERL "); | ||
330 | if (regs->cp0_status & ST0_EXL) | ||
331 | pr_cont("EXL "); | ||
332 | if (regs->cp0_status & ST0_IE) | ||
333 | pr_cont("IE "); | ||
334 | } | ||
335 | pr_cont("\n"); | ||
336 | |||
337 | exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; | ||
338 | printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); | ||
339 | |||
340 | if (1 <= exccode && exccode <= 5) | ||
341 | printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); | ||
342 | |||
343 | printk("PrId : %08x (%s)\n", read_c0_prid(), | ||
344 | cpu_name_string()); | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * FIXME: really the generic show_regs should take a const pointer argument. | ||
349 | */ | ||
350 | void show_regs(struct pt_regs *regs) | ||
351 | { | ||
352 | __show_regs(regs); | ||
353 | dump_stack(); | ||
354 | } | ||
355 | |||
356 | void show_registers(struct pt_regs *regs) | ||
357 | { | ||
358 | const int field = 2 * sizeof(unsigned long); | ||
359 | mm_segment_t old_fs = get_fs(); | ||
360 | |||
361 | __show_regs(regs); | ||
362 | print_modules(); | ||
363 | printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", | ||
364 | current->comm, current->pid, current_thread_info(), current, | ||
365 | field, current_thread_info()->tp_value); | ||
366 | if (cpu_has_userlocal) { | ||
367 | unsigned long tls; | ||
368 | |||
369 | tls = read_c0_userlocal(); | ||
370 | if (tls != current_thread_info()->tp_value) | ||
371 | printk("*HwTLS: %0*lx\n", field, tls); | ||
372 | } | ||
373 | |||
374 | if (!user_mode(regs)) | ||
375 | /* Necessary for getting the correct stack content */ | ||
376 | set_fs(KERNEL_DS); | ||
377 | show_stacktrace(current, regs, KERN_DEFAULT); | ||
378 | show_code((unsigned int __user *) regs->cp0_epc); | ||
379 | printk("\n"); | ||
380 | set_fs(old_fs); | ||
381 | } | ||
382 | |||
383 | static DEFINE_RAW_SPINLOCK(die_lock); | ||
384 | |||
385 | void __noreturn die(const char *str, struct pt_regs *regs) | ||
386 | { | ||
387 | static int die_counter; | ||
388 | int sig = SIGSEGV; | ||
389 | |||
390 | oops_enter(); | ||
391 | |||
392 | if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, | ||
393 | SIGSEGV) == NOTIFY_STOP) | ||
394 | sig = 0; | ||
395 | |||
396 | console_verbose(); | ||
397 | raw_spin_lock_irq(&die_lock); | ||
398 | bust_spinlocks(1); | ||
399 | |||
400 | printk("%s[#%d]:\n", str, ++die_counter); | ||
401 | show_registers(regs); | ||
402 | add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); | ||
403 | raw_spin_unlock_irq(&die_lock); | ||
404 | |||
405 | oops_exit(); | ||
406 | |||
407 | if (in_interrupt()) | ||
408 | panic("Fatal exception in interrupt"); | ||
409 | |||
410 | if (panic_on_oops) | ||
411 | panic("Fatal exception"); | ||
412 | |||
413 | if (regs && kexec_should_crash(current)) | ||
414 | crash_kexec(regs); | ||
415 | |||
416 | do_exit(sig); | ||
417 | } | ||
418 | |||
419 | extern struct exception_table_entry __start___dbe_table[]; | ||
420 | extern struct exception_table_entry __stop___dbe_table[]; | ||
421 | |||
422 | __asm__( | ||
423 | " .section __dbe_table, \"a\"\n" | ||
424 | " .previous \n"); | ||
425 | |||
426 | /* Given an address, look for it in the exception tables. */ | ||
427 | static const struct exception_table_entry *search_dbe_tables(unsigned long addr) | ||
428 | { | ||
429 | const struct exception_table_entry *e; | ||
430 | |||
431 | e = search_extable(__start___dbe_table, | ||
432 | __stop___dbe_table - __start___dbe_table, addr); | ||
433 | if (!e) | ||
434 | e = search_module_dbetables(addr); | ||
435 | return e; | ||
436 | } | ||
437 | |||
438 | asmlinkage void do_be(struct pt_regs *regs) | ||
439 | { | ||
440 | const int field = 2 * sizeof(unsigned long); | ||
441 | const struct exception_table_entry *fixup = NULL; | ||
442 | int data = regs->cp0_cause & 4; | ||
443 | int action = MIPS_BE_FATAL; | ||
444 | enum ctx_state prev_state; | ||
445 | |||
446 | prev_state = exception_enter(); | ||
447 | /* XXX For now. Fixme, this searches the wrong table ... */ | ||
448 | if (data && !user_mode(regs)) | ||
449 | fixup = search_dbe_tables(exception_epc(regs)); | ||
450 | |||
451 | if (fixup) | ||
452 | action = MIPS_BE_FIXUP; | ||
453 | |||
454 | if (board_be_handler) | ||
455 | action = board_be_handler(regs, fixup != NULL); | ||
456 | else | ||
457 | mips_cm_error_report(); | ||
458 | |||
459 | switch (action) { | ||
460 | case MIPS_BE_DISCARD: | ||
461 | goto out; | ||
462 | case MIPS_BE_FIXUP: | ||
463 | if (fixup) { | ||
464 | regs->cp0_epc = fixup->nextinsn; | ||
465 | goto out; | ||
466 | } | ||
467 | break; | ||
468 | default: | ||
469 | break; | ||
470 | } | ||
471 | |||
472 | /* | ||
473 | * Assume it would be too dangerous to continue ... | ||
474 | */ | ||
475 | printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", | ||
476 | data ? "Data" : "Instruction", | ||
477 | field, regs->cp0_epc, field, regs->regs[31]); | ||
478 | if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, | ||
479 | SIGBUS) == NOTIFY_STOP) | ||
480 | goto out; | ||
481 | |||
482 | die_if_kernel("Oops", regs); | ||
483 | force_sig(SIGBUS); | ||
484 | |||
485 | out: | ||
486 | exception_exit(prev_state); | ||
487 | } | ||
488 | |||
489 | /* | ||
490 | * ll/sc, rdhwr, sync emulation | ||
491 | */ | ||
492 | |||
493 | #define OPCODE 0xfc000000 | ||
494 | #define BASE 0x03e00000 | ||
495 | #define RT 0x001f0000 | ||
496 | #define OFFSET 0x0000ffff | ||
497 | #define LL 0xc0000000 | ||
498 | #define SC 0xe0000000 | ||
499 | #define SPEC0 0x00000000 | ||
500 | #define SPEC3 0x7c000000 | ||
501 | #define RD 0x0000f800 | ||
502 | #define FUNC 0x0000003f | ||
503 | #define SYNC 0x0000000f | ||
504 | #define RDHWR 0x0000003b | ||
505 | |||
506 | /* microMIPS definitions */ | ||
507 | #define MM_POOL32A_FUNC 0xfc00ffff | ||
508 | #define MM_RDHWR 0x00006b3c | ||
509 | #define MM_RS 0x001f0000 | ||
510 | #define MM_RT 0x03e00000 | ||
511 | |||
512 | /* | ||
513 | * The ll_bit is cleared by r*_switch.S | ||
514 | */ | ||
515 | |||
516 | unsigned int ll_bit; | ||
517 | struct task_struct *ll_task; | ||
518 | |||
519 | static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) | ||
520 | { | ||
521 | unsigned long value, __user *vaddr; | ||
522 | long offset; | ||
523 | |||
524 | /* | ||
525 | * analyse the ll instruction that just caused a ri exception | ||
526 | * and put the referenced address to addr. | ||
527 | */ | ||
528 | |||
529 | /* sign extend offset */ | ||
530 | offset = opcode & OFFSET; | ||
531 | offset <<= 16; | ||
532 | offset >>= 16; | ||
533 | |||
534 | vaddr = (unsigned long __user *) | ||
535 | ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); | ||
536 | |||
537 | if ((unsigned long)vaddr & 3) | ||
538 | return SIGBUS; | ||
539 | if (get_user(value, vaddr)) | ||
540 | return SIGSEGV; | ||
541 | |||
542 | preempt_disable(); | ||
543 | |||
544 | if (ll_task == NULL || ll_task == current) { | ||
545 | ll_bit = 1; | ||
546 | } else { | ||
547 | ll_bit = 0; | ||
548 | } | ||
549 | ll_task = current; | ||
550 | |||
551 | preempt_enable(); | ||
552 | |||
553 | regs->regs[(opcode & RT) >> 16] = value; | ||
554 | |||
555 | return 0; | ||
556 | } | ||
557 | |||
558 | static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) | ||
559 | { | ||
560 | unsigned long __user *vaddr; | ||
561 | unsigned long reg; | ||
562 | long offset; | ||
563 | |||
564 | /* | ||
565 | * analyse the sc instruction that just caused a ri exception | ||
566 | * and put the referenced address to addr. | ||
567 | */ | ||
568 | |||
569 | /* sign extend offset */ | ||
570 | offset = opcode & OFFSET; | ||
571 | offset <<= 16; | ||
572 | offset >>= 16; | ||
573 | |||
574 | vaddr = (unsigned long __user *) | ||
575 | ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); | ||
576 | reg = (opcode & RT) >> 16; | ||
577 | |||
578 | if ((unsigned long)vaddr & 3) | ||
579 | return SIGBUS; | ||
580 | |||
581 | preempt_disable(); | ||
582 | |||
583 | if (ll_bit == 0 || ll_task != current) { | ||
584 | regs->regs[reg] = 0; | ||
585 | preempt_enable(); | ||
586 | return 0; | ||
587 | } | ||
588 | |||
589 | preempt_enable(); | ||
590 | |||
591 | if (put_user(regs->regs[reg], vaddr)) | ||
592 | return SIGSEGV; | ||
593 | |||
594 | regs->regs[reg] = 1; | ||
595 | |||
596 | return 0; | ||
597 | } | ||
598 | |||
599 | /* | ||
600 | * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both | ||
601 | * opcodes are supposed to result in coprocessor unusable exceptions if | ||
602 | * executed on ll/sc-less processors. That's the theory. In practice a | ||
603 | * few processors such as NEC's VR4100 throw reserved instruction exceptions | ||
604 | * instead, so we're doing the emulation thing in both exception handlers. | ||
605 | */ | ||
606 | static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) | ||
607 | { | ||
608 | if ((opcode & OPCODE) == LL) { | ||
609 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | ||
610 | 1, regs, 0); | ||
611 | return simulate_ll(regs, opcode); | ||
612 | } | ||
613 | if ((opcode & OPCODE) == SC) { | ||
614 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | ||
615 | 1, regs, 0); | ||
616 | return simulate_sc(regs, opcode); | ||
617 | } | ||
618 | |||
619 | return -1; /* Must be something else ... */ | ||
620 | } | ||
621 | |||
622 | /* | ||
623 | * Simulate trapping 'rdhwr' instructions to provide user accessible | ||
624 | * registers not implemented in hardware. | ||
625 | */ | ||
626 | static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) | ||
627 | { | ||
628 | struct thread_info *ti = task_thread_info(current); | ||
629 | |||
630 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | ||
631 | 1, regs, 0); | ||
632 | switch (rd) { | ||
633 | case MIPS_HWR_CPUNUM: /* CPU number */ | ||
634 | regs->regs[rt] = smp_processor_id(); | ||
635 | return 0; | ||
636 | case MIPS_HWR_SYNCISTEP: /* SYNCI length */ | ||
637 | regs->regs[rt] = min(current_cpu_data.dcache.linesz, | ||
638 | current_cpu_data.icache.linesz); | ||
639 | return 0; | ||
640 | case MIPS_HWR_CC: /* Read count register */ | ||
641 | regs->regs[rt] = read_c0_count(); | ||
642 | return 0; | ||
643 | case MIPS_HWR_CCRES: /* Count register resolution */ | ||
644 | switch (current_cpu_type()) { | ||
645 | case CPU_20KC: | ||
646 | case CPU_25KF: | ||
647 | regs->regs[rt] = 1; | ||
648 | break; | ||
649 | default: | ||
650 | regs->regs[rt] = 2; | ||
651 | } | ||
652 | return 0; | ||
653 | case MIPS_HWR_ULR: /* Read UserLocal register */ | ||
654 | regs->regs[rt] = ti->tp_value; | ||
655 | return 0; | ||
656 | default: | ||
657 | return -1; | ||
658 | } | ||
659 | } | ||
660 | |||
661 | static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) | ||
662 | { | ||
663 | if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { | ||
664 | int rd = (opcode & RD) >> 11; | ||
665 | int rt = (opcode & RT) >> 16; | ||
666 | |||
667 | simulate_rdhwr(regs, rd, rt); | ||
668 | return 0; | ||
669 | } | ||
670 | |||
671 | /* Not ours. */ | ||
672 | return -1; | ||
673 | } | ||
674 | |||
675 | static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) | ||
676 | { | ||
677 | if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { | ||
678 | int rd = (opcode & MM_RS) >> 16; | ||
679 | int rt = (opcode & MM_RT) >> 21; | ||
680 | simulate_rdhwr(regs, rd, rt); | ||
681 | return 0; | ||
682 | } | ||
683 | |||
684 | /* Not ours. */ | ||
685 | return -1; | ||
686 | } | ||
687 | |||
688 | static int simulate_sync(struct pt_regs *regs, unsigned int opcode) | ||
689 | { | ||
690 | if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { | ||
691 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, | ||
692 | 1, regs, 0); | ||
693 | return 0; | ||
694 | } | ||
695 | |||
696 | return -1; /* Must be something else ... */ | ||
697 | } | ||
698 | |||
699 | /* | ||
700 | * Loongson-3 CSR instructions emulation | ||
701 | */ | ||
702 | |||
703 | #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION | ||
704 | |||
705 | #define LWC2 0xc8000000 | ||
706 | #define RS BASE | ||
707 | #define CSR_OPCODE2 0x00000118 | ||
708 | #define CSR_OPCODE2_MASK 0x000007ff | ||
709 | #define CSR_FUNC_MASK RT | ||
710 | #define CSR_FUNC_CPUCFG 0x8 | ||
711 | |||
712 | static int simulate_loongson3_cpucfg(struct pt_regs *regs, | ||
713 | unsigned int opcode) | ||
714 | { | ||
715 | int op = opcode & OPCODE; | ||
716 | int op2 = opcode & CSR_OPCODE2_MASK; | ||
717 | int csr_func = (opcode & CSR_FUNC_MASK) >> 16; | ||
718 | |||
719 | if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) { | ||
720 | int rd = (opcode & RD) >> 11; | ||
721 | int rs = (opcode & RS) >> 21; | ||
722 | __u64 sel = regs->regs[rs]; | ||
723 | |||
724 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); | ||
725 | |||
726 | /* Do not emulate on unsupported core models. */ | ||
727 | preempt_disable(); | ||
728 | if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) { | ||
729 | preempt_enable(); | ||
730 | return -1; | ||
731 | } | ||
732 | regs->regs[rd] = loongson3_cpucfg_read_synthesized( | ||
733 | ¤t_cpu_data, sel); | ||
734 | preempt_enable(); | ||
735 | return 0; | ||
736 | } | ||
737 | |||
738 | /* Not ours. */ | ||
739 | return -1; | ||
740 | } | ||
741 | #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */ | ||
742 | |||
743 | asmlinkage void do_ov(struct pt_regs *regs) | ||
744 | { | ||
745 | enum ctx_state prev_state; | ||
746 | |||
747 | prev_state = exception_enter(); | ||
748 | die_if_kernel("Integer overflow", regs); | ||
749 | |||
750 | force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc); | ||
751 | exception_exit(prev_state); | ||
752 | } | ||
753 | |||
754 | #ifdef CONFIG_MIPS_FP_SUPPORT | ||
755 | |||
756 | /* | ||
757 | * Send SIGFPE according to FCSR Cause bits, which must have already | ||
758 | * been masked against Enable bits. This is impotant as Inexact can | ||
759 | * happen together with Overflow or Underflow, and `ptrace' can set | ||
760 | * any bits. | ||
761 | */ | ||
762 | void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, | ||
763 | struct task_struct *tsk) | ||
764 | { | ||
765 | int si_code = FPE_FLTUNK; | ||
766 | |||
767 | if (fcr31 & FPU_CSR_INV_X) | ||
768 | si_code = FPE_FLTINV; | ||
769 | else if (fcr31 & FPU_CSR_DIV_X) | ||
770 | si_code = FPE_FLTDIV; | ||
771 | else if (fcr31 & FPU_CSR_OVF_X) | ||
772 | si_code = FPE_FLTOVF; | ||
773 | else if (fcr31 & FPU_CSR_UDF_X) | ||
774 | si_code = FPE_FLTUND; | ||
775 | else if (fcr31 & FPU_CSR_INE_X) | ||
776 | si_code = FPE_FLTRES; | ||
777 | |||
778 | force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk); | ||
779 | } | ||
780 | |||
781 | int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) | ||
782 | { | ||
783 | int si_code; | ||
784 | struct vm_area_struct *vma; | ||
785 | |||
786 | switch (sig) { | ||
787 | case 0: | ||
788 | return 0; | ||
789 | |||
790 | case SIGFPE: | ||
791 | force_fcr31_sig(fcr31, fault_addr, current); | ||
792 | return 1; | ||
793 | |||
794 | case SIGBUS: | ||
795 | force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr); | ||
796 | return 1; | ||
797 | |||
798 | case SIGSEGV: | ||
799 | mmap_read_lock(current->mm); | ||
800 | vma = find_vma(current->mm, (unsigned long)fault_addr); | ||
801 | if (vma && (vma->vm_start <= (unsigned long)fault_addr)) | ||
802 | si_code = SEGV_ACCERR; | ||
803 | else | ||
804 | si_code = SEGV_MAPERR; | ||
805 | mmap_read_unlock(current->mm); | ||
806 | force_sig_fault(SIGSEGV, si_code, fault_addr); | ||
807 | return 1; | ||
808 | |||
809 | default: | ||
810 | force_sig(sig); | ||
811 | return 1; | ||
812 | } | ||
813 | } | ||
814 | |||
815 | static int simulate_fp(struct pt_regs *regs, unsigned int opcode, | ||
816 | unsigned long old_epc, unsigned long old_ra) | ||
817 | { | ||
818 | union mips_instruction inst = { .word = opcode }; | ||
819 | void __user *fault_addr; | ||
820 | unsigned long fcr31; | ||
821 | int sig; | ||
822 | |||
823 | /* If it's obviously not an FP instruction, skip it */ | ||
824 | switch (inst.i_format.opcode) { | ||
825 | case cop1_op: | ||
826 | case cop1x_op: | ||
827 | case lwc1_op: | ||
828 | case ldc1_op: | ||
829 | case swc1_op: | ||
830 | case sdc1_op: | ||
831 | break; | ||
832 | |||
833 | default: | ||
834 | return -1; | ||
835 | } | ||
836 | |||
837 | /* | ||
838 | * do_ri skipped over the instruction via compute_return_epc, undo | ||
839 | * that for the FPU emulator. | ||
840 | */ | ||
841 | regs->cp0_epc = old_epc; | ||
842 | regs->regs[31] = old_ra; | ||
843 | |||
844 | /* Run the emulator */ | ||
845 | sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, | ||
846 | &fault_addr); | ||
847 | |||
848 | /* | ||
849 | * We can't allow the emulated instruction to leave any | ||
850 | * enabled Cause bits set in $fcr31. | ||
851 | */ | ||
852 | fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); | ||
853 | current->thread.fpu.fcr31 &= ~fcr31; | ||
854 | |||
855 | /* Restore the hardware register state */ | ||
856 | own_fpu(1); | ||
857 | |||
858 | /* Send a signal if required. */ | ||
859 | process_fpemu_return(sig, fault_addr, fcr31); | ||
860 | |||
861 | return 0; | ||
862 | } | ||
863 | |||
864 | /* | ||
865 | * XXX Delayed fp exceptions when doing a lazy ctx switch XXX | ||
866 | */ | ||
867 | asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) | ||
868 | { | ||
869 | enum ctx_state prev_state; | ||
870 | void __user *fault_addr; | ||
871 | int sig; | ||
872 | |||
873 | prev_state = exception_enter(); | ||
874 | if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, | ||
875 | SIGFPE) == NOTIFY_STOP) | ||
876 | goto out; | ||
877 | |||
878 | /* Clear FCSR.Cause before enabling interrupts */ | ||
879 | write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); | ||
880 | local_irq_enable(); | ||
881 | |||
882 | die_if_kernel("FP exception in kernel code", regs); | ||
883 | |||
884 | if (fcr31 & FPU_CSR_UNI_X) { | ||
885 | /* | ||
886 | * Unimplemented operation exception. If we've got the full | ||
887 | * software emulator on-board, let's use it... | ||
888 | * | ||
889 | * Force FPU to dump state into task/thread context. We're | ||
890 | * moving a lot of data here for what is probably a single | ||
891 | * instruction, but the alternative is to pre-decode the FP | ||
892 | * register operands before invoking the emulator, which seems | ||
893 | * a bit extreme for what should be an infrequent event. | ||
894 | */ | ||
895 | |||
896 | /* Run the emulator */ | ||
897 | sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, | ||
898 | &fault_addr); | ||
899 | |||
900 | /* | ||
901 | * We can't allow the emulated instruction to leave any | ||
902 | * enabled Cause bits set in $fcr31. | ||
903 | */ | ||
904 | fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); | ||
905 | current->thread.fpu.fcr31 &= ~fcr31; | ||
906 | |||
907 | /* Restore the hardware register state */ | ||
908 | own_fpu(1); /* Using the FPU again. */ | ||
909 | } else { | ||
910 | sig = SIGFPE; | ||
911 | fault_addr = (void __user *) regs->cp0_epc; | ||
912 | } | ||
913 | |||
914 | /* Send a signal if required. */ | ||
915 | process_fpemu_return(sig, fault_addr, fcr31); | ||
916 | |||
917 | out: | ||
918 | exception_exit(prev_state); | ||
919 | } | ||
920 | |||
921 | /* | ||
922 | * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've | ||
923 | * emulated more than some threshold number of instructions, force migration to | ||
924 | * a "CPU" that has FP support. | ||
925 | */ | ||
926 | static void mt_ase_fp_affinity(void) | ||
927 | { | ||
928 | #ifdef CONFIG_MIPS_MT_FPAFF | ||
929 | if (mt_fpemul_threshold > 0 && | ||
930 | ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { | ||
931 | /* | ||
932 | * If there's no FPU present, or if the application has already | ||
933 | * restricted the allowed set to exclude any CPUs with FPUs, | ||
934 | * we'll skip the procedure. | ||
935 | */ | ||
936 | if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) { | ||
937 | cpumask_t tmask; | ||
938 | |||
939 | current->thread.user_cpus_allowed | ||
940 | = current->cpus_mask; | ||
941 | cpumask_and(&tmask, ¤t->cpus_mask, | ||
942 | &mt_fpu_cpumask); | ||
943 | set_cpus_allowed_ptr(current, &tmask); | ||
944 | set_thread_flag(TIF_FPUBOUND); | ||
945 | } | ||
946 | } | ||
947 | #endif /* CONFIG_MIPS_MT_FPAFF */ | ||
948 | } | ||
949 | |||
950 | #else /* !CONFIG_MIPS_FP_SUPPORT */ | ||
951 | |||
952 | static int simulate_fp(struct pt_regs *regs, unsigned int opcode, | ||
953 | unsigned long old_epc, unsigned long old_ra) | ||
954 | { | ||
955 | return -1; | ||
956 | } | ||
957 | |||
958 | #endif /* !CONFIG_MIPS_FP_SUPPORT */ | ||
959 | |||
960 | void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, | ||
961 | const char *str) | ||
962 | { | ||
963 | char b[40]; | ||
964 | |||
965 | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP | ||
966 | if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, | ||
967 | SIGTRAP) == NOTIFY_STOP) | ||
968 | return; | ||
969 | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ | ||
970 | |||
971 | if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, | ||
972 | SIGTRAP) == NOTIFY_STOP) | ||
973 | return; | ||
974 | |||
975 | /* | ||
976 | * A short test says that IRIX 5.3 sends SIGTRAP for all trap | ||
977 | * insns, even for trap and break codes that indicate arithmetic | ||
978 | * failures. Weird ... | ||
979 | * But should we continue the brokenness??? --macro | ||
980 | */ | ||
981 | switch (code) { | ||
982 | case BRK_OVERFLOW: | ||
983 | case BRK_DIVZERO: | ||
984 | scnprintf(b, sizeof(b), "%s instruction in kernel code", str); | ||
985 | die_if_kernel(b, regs); | ||
986 | force_sig_fault(SIGFPE, | ||
987 | code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF, | ||
988 | (void __user *) regs->cp0_epc); | ||
989 | break; | ||
990 | case BRK_BUG: | ||
991 | die_if_kernel("Kernel bug detected", regs); | ||
992 | force_sig(SIGTRAP); | ||
993 | break; | ||
994 | case BRK_MEMU: | ||
995 | /* | ||
996 | * This breakpoint code is used by the FPU emulator to retake | ||
997 | * control of the CPU after executing the instruction from the | ||
998 | * delay slot of an emulated branch. | ||
999 | * | ||
1000 | * Terminate if exception was recognized as a delay slot return | ||
1001 | * otherwise handle as normal. | ||
1002 | */ | ||
1003 | if (do_dsemulret(regs)) | ||
1004 | return; | ||
1005 | |||
1006 | die_if_kernel("Math emu break/trap", regs); | ||
1007 | force_sig(SIGTRAP); | ||
1008 | break; | ||
1009 | default: | ||
1010 | scnprintf(b, sizeof(b), "%s instruction in kernel code", str); | ||
1011 | die_if_kernel(b, regs); | ||
1012 | if (si_code) { | ||
1013 | force_sig_fault(SIGTRAP, si_code, NULL); | ||
1014 | } else { | ||
1015 | force_sig(SIGTRAP); | ||
1016 | } | ||
1017 | } | ||
1018 | } | ||
1019 | |||
1020 | asmlinkage void do_bp(struct pt_regs *regs) | ||
1021 | { | ||
1022 | unsigned long epc = msk_isa16_mode(exception_epc(regs)); | ||
1023 | unsigned int opcode, bcode; | ||
1024 | enum ctx_state prev_state; | ||
1025 | mm_segment_t seg; | ||
1026 | |||
1027 | seg = get_fs(); | ||
1028 | if (!user_mode(regs)) | ||
1029 | set_fs(KERNEL_DS); | ||
1030 | |||
1031 | prev_state = exception_enter(); | ||
1032 | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; | ||
1033 | if (get_isa16_mode(regs->cp0_epc)) { | ||
1034 | u16 instr[2]; | ||
1035 | |||
1036 | if (__get_user(instr[0], (u16 __user *)epc)) | ||
1037 | goto out_sigsegv; | ||
1038 | |||
1039 | if (!cpu_has_mmips) { | ||
1040 | /* MIPS16e mode */ | ||
1041 | bcode = (instr[0] >> 5) & 0x3f; | ||
1042 | } else if (mm_insn_16bit(instr[0])) { | ||
1043 | /* 16-bit microMIPS BREAK */ | ||
1044 | bcode = instr[0] & 0xf; | ||
1045 | } else { | ||
1046 | /* 32-bit microMIPS BREAK */ | ||
1047 | if (__get_user(instr[1], (u16 __user *)(epc + 2))) | ||
1048 | goto out_sigsegv; | ||
1049 | opcode = (instr[0] << 16) | instr[1]; | ||
1050 | bcode = (opcode >> 6) & ((1 << 20) - 1); | ||
1051 | } | ||
1052 | } else { | ||
1053 | if (__get_user(opcode, (unsigned int __user *)epc)) | ||
1054 | goto out_sigsegv; | ||
1055 | bcode = (opcode >> 6) & ((1 << 20) - 1); | ||
1056 | } | ||
1057 | |||
1058 | /* | ||
1059 | * There is the ancient bug in the MIPS assemblers that the break | ||
1060 | * code starts left to bit 16 instead to bit 6 in the opcode. | ||
1061 | * Gas is bug-compatible, but not always, grrr... | ||
1062 | * We handle both cases with a simple heuristics. --macro | ||
1063 | */ | ||
1064 | if (bcode >= (1 << 10)) | ||
1065 | bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); | ||
1066 | |||
1067 | /* | ||
1068 | * notify the kprobe handlers, if instruction is likely to | ||
1069 | * pertain to them. | ||
1070 | */ | ||
1071 | switch (bcode) { | ||
1072 | case BRK_UPROBE: | ||
1073 | if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, | ||
1074 | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) | ||
1075 | goto out; | ||
1076 | else | ||
1077 | break; | ||
1078 | case BRK_UPROBE_XOL: | ||
1079 | if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, | ||
1080 | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) | ||
1081 | goto out; | ||
1082 | else | ||
1083 | break; | ||
1084 | case BRK_KPROBE_BP: | ||
1085 | if (notify_die(DIE_BREAK, "debug", regs, bcode, | ||
1086 | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) | ||
1087 | goto out; | ||
1088 | else | ||
1089 | break; | ||
1090 | case BRK_KPROBE_SSTEPBP: | ||
1091 | if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, | ||
1092 | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) | ||
1093 | goto out; | ||
1094 | else | ||
1095 | break; | ||
1096 | default: | ||
1097 | break; | ||
1098 | } | ||
1099 | |||
1100 | do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); | ||
1101 | |||
1102 | out: | ||
1103 | set_fs(seg); | ||
1104 | exception_exit(prev_state); | ||
1105 | return; | ||
1106 | |||
1107 | out_sigsegv: | ||
1108 | force_sig(SIGSEGV); | ||
1109 | goto out; | ||
1110 | } | ||
1111 | |||
1112 | asmlinkage void do_tr(struct pt_regs *regs) | ||
1113 | { | ||
1114 | u32 opcode, tcode = 0; | ||
1115 | enum ctx_state prev_state; | ||
1116 | u16 instr[2]; | ||
1117 | mm_segment_t seg; | ||
1118 | unsigned long epc = msk_isa16_mode(exception_epc(regs)); | ||
1119 | |||
1120 | seg = get_fs(); | ||
1121 | if (!user_mode(regs)) | ||
1122 | set_fs(KERNEL_DS); | ||
1123 | |||
1124 | prev_state = exception_enter(); | ||
1125 | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; | ||
1126 | if (get_isa16_mode(regs->cp0_epc)) { | ||
1127 | if (__get_user(instr[0], (u16 __user *)(epc + 0)) || | ||
1128 | __get_user(instr[1], (u16 __user *)(epc + 2))) | ||
1129 | goto out_sigsegv; | ||
1130 | opcode = (instr[0] << 16) | instr[1]; | ||
1131 | /* Immediate versions don't provide a code. */ | ||
1132 | if (!(opcode & OPCODE)) | ||
1133 | tcode = (opcode >> 12) & ((1 << 4) - 1); | ||
1134 | } else { | ||
1135 | if (__get_user(opcode, (u32 __user *)epc)) | ||
1136 | goto out_sigsegv; | ||
1137 | /* Immediate versions don't provide a code. */ | ||
1138 | if (!(opcode & OPCODE)) | ||
1139 | tcode = (opcode >> 6) & ((1 << 10) - 1); | ||
1140 | } | ||
1141 | |||
1142 | do_trap_or_bp(regs, tcode, 0, "Trap"); | ||
1143 | |||
1144 | out: | ||
1145 | set_fs(seg); | ||
1146 | exception_exit(prev_state); | ||
1147 | return; | ||
1148 | |||
1149 | out_sigsegv: | ||
1150 | force_sig(SIGSEGV); | ||
1151 | goto out; | ||
1152 | } | ||
1153 | |||
1154 | asmlinkage void do_ri(struct pt_regs *regs) | ||
1155 | { | ||
1156 | unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); | ||
1157 | unsigned long old_epc = regs->cp0_epc; | ||
1158 | unsigned long old31 = regs->regs[31]; | ||
1159 | enum ctx_state prev_state; | ||
1160 | unsigned int opcode = 0; | ||
1161 | int status = -1; | ||
1162 | |||
1163 | /* | ||
1164 | * Avoid any kernel code. Just emulate the R2 instruction | ||
1165 | * as quickly as possible. | ||
1166 | */ | ||
1167 | if (mipsr2_emulation && cpu_has_mips_r6 && | ||
1168 | likely(user_mode(regs)) && | ||
1169 | likely(get_user(opcode, epc) >= 0)) { | ||
1170 | unsigned long fcr31 = 0; | ||
1171 | |||
1172 | status = mipsr2_decoder(regs, opcode, &fcr31); | ||
1173 | switch (status) { | ||
1174 | case 0: | ||
1175 | case SIGEMT: | ||
1176 | return; | ||
1177 | case SIGILL: | ||
1178 | goto no_r2_instr; | ||
1179 | default: | ||
1180 | process_fpemu_return(status, | ||
1181 | ¤t->thread.cp0_baduaddr, | ||
1182 | fcr31); | ||
1183 | return; | ||
1184 | } | ||
1185 | } | ||
1186 | |||
1187 | no_r2_instr: | ||
1188 | |||
1189 | prev_state = exception_enter(); | ||
1190 | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; | ||
1191 | |||
1192 | if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, | ||
1193 | SIGILL) == NOTIFY_STOP) | ||
1194 | goto out; | ||
1195 | |||
1196 | die_if_kernel("Reserved instruction in kernel code", regs); | ||
1197 | |||
1198 | if (unlikely(compute_return_epc(regs) < 0)) | ||
1199 | goto out; | ||
1200 | |||
1201 | if (!get_isa16_mode(regs->cp0_epc)) { | ||
1202 | if (unlikely(get_user(opcode, epc) < 0)) | ||
1203 | status = SIGSEGV; | ||
1204 | |||
1205 | if (!cpu_has_llsc && status < 0) | ||
1206 | status = simulate_llsc(regs, opcode); | ||
1207 | |||
1208 | if (status < 0) | ||
1209 | status = simulate_rdhwr_normal(regs, opcode); | ||
1210 | |||
1211 | if (status < 0) | ||
1212 | status = simulate_sync(regs, opcode); | ||
1213 | |||
1214 | if (status < 0) | ||
1215 | status = simulate_fp(regs, opcode, old_epc, old31); | ||
1216 | |||
1217 | #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION | ||
1218 | if (status < 0) | ||
1219 | status = simulate_loongson3_cpucfg(regs, opcode); | ||
1220 | #endif | ||
1221 | } else if (cpu_has_mmips) { | ||
1222 | unsigned short mmop[2] = { 0 }; | ||
1223 | |||
1224 | if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) | ||
1225 | status = SIGSEGV; | ||
1226 | if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) | ||
1227 | status = SIGSEGV; | ||
1228 | opcode = mmop[0]; | ||
1229 | opcode = (opcode << 16) | mmop[1]; | ||
1230 | |||
1231 | if (status < 0) | ||
1232 | status = simulate_rdhwr_mm(regs, opcode); | ||
1233 | } | ||
1234 | |||
1235 | if (status < 0) | ||
1236 | status = SIGILL; | ||
1237 | |||
1238 | if (unlikely(status > 0)) { | ||
1239 | regs->cp0_epc = old_epc; /* Undo skip-over. */ | ||
1240 | regs->regs[31] = old31; | ||
1241 | force_sig(status); | ||
1242 | } | ||
1243 | |||
1244 | out: | ||
1245 | exception_exit(prev_state); | ||
1246 | } | ||
1247 | |||
1248 | /* | ||
1249 | * No lock; only written during early bootup by CPU 0. | ||
1250 | */ | ||
1251 | static RAW_NOTIFIER_HEAD(cu2_chain); | ||
1252 | |||
1253 | int __ref register_cu2_notifier(struct notifier_block *nb) | ||
1254 | { | ||
1255 | return raw_notifier_chain_register(&cu2_chain, nb); | ||
1256 | } | ||
1257 | |||
1258 | int cu2_notifier_call_chain(unsigned long val, void *v) | ||
1259 | { | ||
1260 | return raw_notifier_call_chain(&cu2_chain, val, v); | ||
1261 | } | ||
1262 | |||
1263 | static int default_cu2_call(struct notifier_block *nfb, unsigned long action, | ||
1264 | void *data) | ||
1265 | { | ||
1266 | struct pt_regs *regs = data; | ||
1267 | |||
1268 | die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " | ||
1269 | "instruction", regs); | ||
1270 | force_sig(SIGILL); | ||
1271 | |||
1272 | return NOTIFY_OK; | ||
1273 | } | ||
1274 | |||
1275 | #ifdef CONFIG_MIPS_FP_SUPPORT | ||
1276 | |||
1277 | static int enable_restore_fp_context(int msa) | ||
1278 | { | ||
1279 | int err, was_fpu_owner, prior_msa; | ||
1280 | bool first_fp; | ||
1281 | |||
1282 | /* Initialize context if it hasn't been used already */ | ||
1283 | first_fp = init_fp_ctx(current); | ||
1284 | |||
1285 | if (first_fp) { | ||
1286 | preempt_disable(); | ||
1287 | err = own_fpu_inatomic(1); | ||
1288 | if (msa && !err) { | ||
1289 | enable_msa(); | ||
1290 | /* | ||
1291 | * with MSA enabled, userspace can see MSACSR | ||
1292 | * and MSA regs, but the values in them are from | ||
1293 | * other task before current task, restore them | ||
1294 | * from saved fp/msa context | ||
1295 | */ | ||
1296 | write_msa_csr(current->thread.fpu.msacsr); | ||
1297 | /* | ||
1298 | * own_fpu_inatomic(1) just restore low 64bit, | ||
1299 | * fix the high 64bit | ||
1300 | */ | ||
1301 | init_msa_upper(); | ||
1302 | set_thread_flag(TIF_USEDMSA); | ||
1303 | set_thread_flag(TIF_MSA_CTX_LIVE); | ||
1304 | } | ||
1305 | preempt_enable(); | ||
1306 | return err; | ||
1307 | } | ||
1308 | |||
1309 | /* | ||
1310 | * This task has formerly used the FP context. | ||
1311 | * | ||
1312 | * If this thread has no live MSA vector context then we can simply | ||
1313 | * restore the scalar FP context. If it has live MSA vector context | ||
1314 | * (that is, it has or may have used MSA since last performing a | ||
1315 | * function call) then we'll need to restore the vector context. This | ||
1316 | * applies even if we're currently only executing a scalar FP | ||
1317 | * instruction. This is because if we were to later execute an MSA | ||
1318 | * instruction then we'd either have to: | ||
1319 | * | ||
1320 | * - Restore the vector context & clobber any registers modified by | ||
1321 | * scalar FP instructions between now & then. | ||
1322 | * | ||
1323 | * or | ||
1324 | * | ||
1325 | * - Not restore the vector context & lose the most significant bits | ||
1326 | * of all vector registers. | ||
1327 | * | ||
1328 | * Neither of those options is acceptable. We cannot restore the least | ||
1329 | * significant bits of the registers now & only restore the most | ||
1330 | * significant bits later because the most significant bits of any | ||
1331 | * vector registers whose aliased FP register is modified now will have | ||
1332 | * been zeroed. We'd have no way to know that when restoring the vector | ||
1333 | * context & thus may load an outdated value for the most significant | ||
1334 | * bits of a vector register. | ||
1335 | */ | ||
1336 | if (!msa && !thread_msa_context_live()) | ||
1337 | return own_fpu(1); | ||
1338 | |||
1339 | /* | ||
1340 | * This task is using or has previously used MSA. Thus we require | ||
1341 | * that Status.FR == 1. | ||
1342 | */ | ||
1343 | preempt_disable(); | ||
1344 | was_fpu_owner = is_fpu_owner(); | ||
1345 | err = own_fpu_inatomic(0); | ||
1346 | if (err) | ||
1347 | goto out; | ||
1348 | |||
1349 | enable_msa(); | ||
1350 | write_msa_csr(current->thread.fpu.msacsr); | ||
1351 | set_thread_flag(TIF_USEDMSA); | ||
1352 | |||
1353 | /* | ||
1354 | * If this is the first time that the task is using MSA and it has | ||
1355 | * previously used scalar FP in this time slice then we already nave | ||
1356 | * FP context which we shouldn't clobber. We do however need to clear | ||
1357 | * the upper 64b of each vector register so that this task has no | ||
1358 | * opportunity to see data left behind by another. | ||
1359 | */ | ||
1360 | prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); | ||
1361 | if (!prior_msa && was_fpu_owner) { | ||
1362 | init_msa_upper(); | ||
1363 | |||
1364 | goto out; | ||
1365 | } | ||
1366 | |||
1367 | if (!prior_msa) { | ||
1368 | /* | ||
1369 | * Restore the least significant 64b of each vector register | ||
1370 | * from the existing scalar FP context. | ||
1371 | */ | ||
1372 | _restore_fp(current); | ||
1373 | |||
1374 | /* | ||
1375 | * The task has not formerly used MSA, so clear the upper 64b | ||
1376 | * of each vector register such that it cannot see data left | ||
1377 | * behind by another task. | ||
1378 | */ | ||
1379 | init_msa_upper(); | ||
1380 | } else { | ||
1381 | /* We need to restore the vector context. */ | ||
1382 | restore_msa(current); | ||
1383 | |||
1384 | /* Restore the scalar FP control & status register */ | ||
1385 | if (!was_fpu_owner) | ||
1386 | write_32bit_cp1_register(CP1_STATUS, | ||
1387 | current->thread.fpu.fcr31); | ||
1388 | } | ||
1389 | |||
1390 | out: | ||
1391 | preempt_enable(); | ||
1392 | |||
1393 | return 0; | ||
1394 | } | ||
1395 | |||
1396 | #else /* !CONFIG_MIPS_FP_SUPPORT */ | ||
1397 | |||
1398 | static int enable_restore_fp_context(int msa) | ||
1399 | { | ||
1400 | return SIGILL; | ||
1401 | } | ||
1402 | |||
1403 | #endif /* CONFIG_MIPS_FP_SUPPORT */ | ||
1404 | |||
1405 | asmlinkage void do_cpu(struct pt_regs *regs) | ||
1406 | { | ||
1407 | enum ctx_state prev_state; | ||
1408 | unsigned int __user *epc; | ||
1409 | unsigned long old_epc, old31; | ||
1410 | unsigned int opcode; | ||
1411 | unsigned int cpid; | ||
1412 | int status; | ||
1413 | |||
1414 | prev_state = exception_enter(); | ||
1415 | cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; | ||
1416 | |||
1417 | if (cpid != 2) | ||
1418 | die_if_kernel("do_cpu invoked from kernel context!", regs); | ||
1419 | |||
1420 | switch (cpid) { | ||
1421 | case 0: | ||
1422 | epc = (unsigned int __user *)exception_epc(regs); | ||
1423 | old_epc = regs->cp0_epc; | ||
1424 | old31 = regs->regs[31]; | ||
1425 | opcode = 0; | ||
1426 | status = -1; | ||
1427 | |||
1428 | if (unlikely(compute_return_epc(regs) < 0)) | ||
1429 | break; | ||
1430 | |||
1431 | if (!get_isa16_mode(regs->cp0_epc)) { | ||
1432 | if (unlikely(get_user(opcode, epc) < 0)) | ||
1433 | status = SIGSEGV; | ||
1434 | |||
1435 | if (!cpu_has_llsc && status < 0) | ||
1436 | status = simulate_llsc(regs, opcode); | ||
1437 | } | ||
1438 | |||
1439 | if (status < 0) | ||
1440 | status = SIGILL; | ||
1441 | |||
1442 | if (unlikely(status > 0)) { | ||
1443 | regs->cp0_epc = old_epc; /* Undo skip-over. */ | ||
1444 | regs->regs[31] = old31; | ||
1445 | force_sig(status); | ||
1446 | } | ||
1447 | |||
1448 | break; | ||
1449 | |||
1450 | #ifdef CONFIG_MIPS_FP_SUPPORT | ||
1451 | case 3: | ||
1452 | /* | ||
1453 | * The COP3 opcode space and consequently the CP0.Status.CU3 | ||
1454 | * bit and the CP0.Cause.CE=3 encoding have been removed as | ||
1455 | * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs | ||
1456 | * up the space has been reused for COP1X instructions, that | ||
1457 | * are enabled by the CP0.Status.CU1 bit and consequently | ||
1458 | * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable | ||
1459 | * exceptions. Some FPU-less processors that implement one | ||
1460 | * of these ISAs however use this code erroneously for COP1X | ||
1461 | * instructions. Therefore we redirect this trap to the FP | ||
1462 | * emulator too. | ||
1463 | */ | ||
1464 | if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { | ||
1465 | force_sig(SIGILL); | ||
1466 | break; | ||
1467 | } | ||
1468 | fallthrough; | ||
1469 | case 1: { | ||
1470 | void __user *fault_addr; | ||
1471 | unsigned long fcr31; | ||
1472 | int err, sig; | ||
1473 | |||
1474 | err = enable_restore_fp_context(0); | ||
1475 | |||
1476 | if (raw_cpu_has_fpu && !err) | ||
1477 | break; | ||
1478 | |||
1479 | sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, | ||
1480 | &fault_addr); | ||
1481 | |||
1482 | /* | ||
1483 | * We can't allow the emulated instruction to leave | ||
1484 | * any enabled Cause bits set in $fcr31. | ||
1485 | */ | ||
1486 | fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); | ||
1487 | current->thread.fpu.fcr31 &= ~fcr31; | ||
1488 | |||
1489 | /* Send a signal if required. */ | ||
1490 | if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) | ||
1491 | mt_ase_fp_affinity(); | ||
1492 | |||
1493 | break; | ||
1494 | } | ||
1495 | #else /* CONFIG_MIPS_FP_SUPPORT */ | ||
1496 | case 1: | ||
1497 | case 3: | ||
1498 | force_sig(SIGILL); | ||
1499 | break; | ||
1500 | #endif /* CONFIG_MIPS_FP_SUPPORT */ | ||
1501 | |||
1502 | case 2: | ||
1503 | raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); | ||
1504 | break; | ||
1505 | } | ||
1506 | |||
1507 | exception_exit(prev_state); | ||
1508 | } | ||
1509 | |||
1510 | asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) | ||
1511 | { | ||
1512 | enum ctx_state prev_state; | ||
1513 | |||
1514 | prev_state = exception_enter(); | ||
1515 | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; | ||
1516 | if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, | ||
1517 | current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) | ||
1518 | goto out; | ||
1519 | |||
1520 | /* Clear MSACSR.Cause before enabling interrupts */ | ||
1521 | write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); | ||
1522 | local_irq_enable(); | ||
1523 | |||
1524 | die_if_kernel("do_msa_fpe invoked from kernel context!", regs); | ||
1525 | force_sig(SIGFPE); | ||
1526 | out: | ||
1527 | exception_exit(prev_state); | ||
1528 | } | ||
1529 | |||
1530 | asmlinkage void do_msa(struct pt_regs *regs) | ||
1531 | { | ||
1532 | enum ctx_state prev_state; | ||
1533 | int err; | ||
1534 | |||
1535 | prev_state = exception_enter(); | ||
1536 | |||
1537 | if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { | ||
1538 | force_sig(SIGILL); | ||
1539 | goto out; | ||
1540 | } | ||
1541 | |||
1542 | die_if_kernel("do_msa invoked from kernel context!", regs); | ||
1543 | |||
1544 | err = enable_restore_fp_context(1); | ||
1545 | if (err) | ||
1546 | force_sig(SIGILL); | ||
1547 | out: | ||
1548 | exception_exit(prev_state); | ||
1549 | } | ||
1550 | |||
1551 | asmlinkage void do_mdmx(struct pt_regs *regs) | ||
1552 | { | ||
1553 | enum ctx_state prev_state; | ||
1554 | |||
1555 | prev_state = exception_enter(); | ||
1556 | force_sig(SIGILL); | ||
1557 | exception_exit(prev_state); | ||
1558 | } | ||
1559 | |||
1560 | /* | ||
1561 | * Called with interrupts disabled. | ||
1562 | */ | ||
1563 | asmlinkage void do_watch(struct pt_regs *regs) | ||
1564 | { | ||
1565 | enum ctx_state prev_state; | ||
1566 | |||
1567 | prev_state = exception_enter(); | ||
1568 | /* | ||
1569 | * Clear WP (bit 22) bit of cause register so we don't loop | ||
1570 | * forever. | ||
1571 | */ | ||
1572 | clear_c0_cause(CAUSEF_WP); | ||
1573 | |||
1574 | /* | ||
1575 | * If the current thread has the watch registers loaded, save | ||
1576 | * their values and send SIGTRAP. Otherwise another thread | ||
1577 | * left the registers set, clear them and continue. | ||
1578 | */ | ||
1579 | if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { | ||
1580 | mips_read_watch_registers(); | ||
1581 | local_irq_enable(); | ||
1582 | force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL); | ||
1583 | } else { | ||
1584 | mips_clear_watch_registers(); | ||
1585 | local_irq_enable(); | ||
1586 | } | ||
1587 | exception_exit(prev_state); | ||
1588 | } | ||
1589 | |||
1590 | asmlinkage void do_mcheck(struct pt_regs *regs) | ||
1591 | { | ||
1592 | int multi_match = regs->cp0_status & ST0_TS; | ||
1593 | enum ctx_state prev_state; | ||
1594 | mm_segment_t old_fs = get_fs(); | ||
1595 | |||
1596 | prev_state = exception_enter(); | ||
1597 | show_regs(regs); | ||
1598 | |||
1599 | if (multi_match) { | ||
1600 | dump_tlb_regs(); | ||
1601 | pr_info("\n"); | ||
1602 | dump_tlb_all(); | ||
1603 | } | ||
1604 | |||
1605 | if (!user_mode(regs)) | ||
1606 | set_fs(KERNEL_DS); | ||
1607 | |||
1608 | show_code((unsigned int __user *) regs->cp0_epc); | ||
1609 | |||
1610 | set_fs(old_fs); | ||
1611 | |||
1612 | /* | ||
1613 | * Some chips may have other causes of machine check (e.g. SB1 | ||
1614 | * graduation timer) | ||
1615 | */ | ||
1616 | panic("Caught Machine Check exception - %scaused by multiple " | ||
1617 | "matching entries in the TLB.", | ||
1618 | (multi_match) ? "" : "not "); | ||
1619 | } | ||
1620 | |||
1621 | asmlinkage void do_mt(struct pt_regs *regs) | ||
1622 | { | ||
1623 | int subcode; | ||
1624 | |||
1625 | subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) | ||
1626 | >> VPECONTROL_EXCPT_SHIFT; | ||
1627 | switch (subcode) { | ||
1628 | case 0: | ||
1629 | printk(KERN_DEBUG "Thread Underflow\n"); | ||
1630 | break; | ||
1631 | case 1: | ||
1632 | printk(KERN_DEBUG "Thread Overflow\n"); | ||
1633 | break; | ||
1634 | case 2: | ||
1635 | printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); | ||
1636 | break; | ||
1637 | case 3: | ||
1638 | printk(KERN_DEBUG "Gating Storage Exception\n"); | ||
1639 | break; | ||
1640 | case 4: | ||
1641 | printk(KERN_DEBUG "YIELD Scheduler Exception\n"); | ||
1642 | break; | ||
1643 | case 5: | ||
1644 | printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); | ||
1645 | break; | ||
1646 | default: | ||
1647 | printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", | ||
1648 | subcode); | ||
1649 | break; | ||
1650 | } | ||
1651 | die_if_kernel("MIPS MT Thread exception in kernel", regs); | ||
1652 | |||
1653 | force_sig(SIGILL); | ||
1654 | } | ||
1655 | |||
1656 | |||
1657 | asmlinkage void do_dsp(struct pt_regs *regs) | ||
1658 | { | ||
1659 | if (cpu_has_dsp) | ||
1660 | panic("Unexpected DSP exception"); | ||
1661 | |||
1662 | force_sig(SIGILL); | ||
1663 | } | ||
1664 | |||
1665 | asmlinkage void do_reserved(struct pt_regs *regs) | ||
1666 | { | ||
1667 | /* | ||
1668 | * Game over - no way to handle this if it ever occurs. Most probably | ||
1669 | * caused by a new unknown cpu type or after another deadly | ||
1670 | * hard/software error. | ||
1671 | */ | ||
1672 | show_regs(regs); | ||
1673 | panic("Caught reserved exception %ld - should not happen.", | ||
1674 | (regs->cp0_cause & 0x7f) >> 2); | ||
1675 | } | ||
1676 | |||
1677 | static int __initdata l1parity = 1; | ||
1678 | static int __init nol1parity(char *s) | ||
1679 | { | ||
1680 | l1parity = 0; | ||
1681 | return 1; | ||
1682 | } | ||
1683 | __setup("nol1par", nol1parity); | ||
1684 | static int __initdata l2parity = 1; | ||
1685 | static int __init nol2parity(char *s) | ||
1686 | { | ||
1687 | l2parity = 0; | ||
1688 | return 1; | ||
1689 | } | ||
1690 | __setup("nol2par", nol2parity); | ||
1691 | |||
1692 | /* | ||
1693 | * Some MIPS CPUs can enable/disable for cache parity detection, but do | ||
1694 | * it different ways. | ||
1695 | */ | ||
1696 | static inline __init void parity_protection_init(void) | ||
1697 | { | ||
1698 | #define ERRCTL_PE 0x80000000 | ||
1699 | #define ERRCTL_L2P 0x00800000 | ||
1700 | |||
1701 | if (mips_cm_revision() >= CM_REV_CM3) { | ||
1702 | ulong gcr_ectl, cp0_ectl; | ||
1703 | |||
1704 | /* | ||
1705 | * With CM3 systems we need to ensure that the L1 & L2 | ||
1706 | * parity enables are set to the same value, since this | ||
1707 | * is presumed by the hardware engineers. | ||
1708 | * | ||
1709 | * If the user disabled either of L1 or L2 ECC checking, | ||
1710 | * disable both. | ||
1711 | */ | ||
1712 | l1parity &= l2parity; | ||
1713 | l2parity &= l1parity; | ||
1714 | |||
1715 | /* Probe L1 ECC support */ | ||
1716 | cp0_ectl = read_c0_ecc(); | ||
1717 | write_c0_ecc(cp0_ectl | ERRCTL_PE); | ||
1718 | back_to_back_c0_hazard(); | ||
1719 | cp0_ectl = read_c0_ecc(); | ||
1720 | |||
1721 | /* Probe L2 ECC support */ | ||
1722 | gcr_ectl = read_gcr_err_control(); | ||
1723 | |||
1724 | if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) || | ||
1725 | !(cp0_ectl & ERRCTL_PE)) { | ||
1726 | /* | ||
1727 | * One of L1 or L2 ECC checking isn't supported, | ||
1728 | * so we cannot enable either. | ||
1729 | */ | ||
1730 | l1parity = l2parity = 0; | ||
1731 | } | ||
1732 | |||
1733 | /* Configure L1 ECC checking */ | ||
1734 | if (l1parity) | ||
1735 | cp0_ectl |= ERRCTL_PE; | ||
1736 | else | ||
1737 | cp0_ectl &= ~ERRCTL_PE; | ||
1738 | write_c0_ecc(cp0_ectl); | ||
1739 | back_to_back_c0_hazard(); | ||
1740 | WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); | ||
1741 | |||
1742 | /* Configure L2 ECC checking */ | ||
1743 | if (l2parity) | ||
1744 | gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN; | ||
1745 | else | ||
1746 | gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN; | ||
1747 | write_gcr_err_control(gcr_ectl); | ||
1748 | gcr_ectl = read_gcr_err_control(); | ||
1749 | gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN; | ||
1750 | WARN_ON(!!gcr_ectl != l2parity); | ||
1751 | |||
1752 | pr_info("Cache parity protection %sabled\n", | ||
1753 | l1parity ? "en" : "dis"); | ||
1754 | return; | ||
1755 | } | ||
1756 | |||
1757 | switch (current_cpu_type()) { | ||
1758 | case CPU_24K: | ||
1759 | case CPU_34K: | ||
1760 | case CPU_74K: | ||
1761 | case CPU_1004K: | ||
1762 | case CPU_1074K: | ||
1763 | case CPU_INTERAPTIV: | ||
1764 | case CPU_PROAPTIV: | ||
1765 | case CPU_P5600: | ||
1766 | case CPU_QEMU_GENERIC: | ||
1767 | case CPU_P6600: | ||
1768 | { | ||
1769 | unsigned long errctl; | ||
1770 | unsigned int l1parity_present, l2parity_present; | ||
1771 | |||
1772 | errctl = read_c0_ecc(); | ||
1773 | errctl &= ~(ERRCTL_PE|ERRCTL_L2P); | ||
1774 | |||
1775 | /* probe L1 parity support */ | ||
1776 | write_c0_ecc(errctl | ERRCTL_PE); | ||
1777 | back_to_back_c0_hazard(); | ||
1778 | l1parity_present = (read_c0_ecc() & ERRCTL_PE); | ||
1779 | |||
1780 | /* probe L2 parity support */ | ||
1781 | write_c0_ecc(errctl|ERRCTL_L2P); | ||
1782 | back_to_back_c0_hazard(); | ||
1783 | l2parity_present = (read_c0_ecc() & ERRCTL_L2P); | ||
1784 | |||
1785 | if (l1parity_present && l2parity_present) { | ||
1786 | if (l1parity) | ||
1787 | errctl |= ERRCTL_PE; | ||
1788 | if (l1parity ^ l2parity) | ||
1789 | errctl |= ERRCTL_L2P; | ||
1790 | } else if (l1parity_present) { | ||
1791 | if (l1parity) | ||
1792 | errctl |= ERRCTL_PE; | ||
1793 | } else if (l2parity_present) { | ||
1794 | if (l2parity) | ||
1795 | errctl |= ERRCTL_L2P; | ||
1796 | } else { | ||
1797 | /* No parity available */ | ||
1798 | } | ||
1799 | |||
1800 | printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); | ||
1801 | |||
1802 | write_c0_ecc(errctl); | ||
1803 | back_to_back_c0_hazard(); | ||
1804 | errctl = read_c0_ecc(); | ||
1805 | printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); | ||
1806 | |||
1807 | if (l1parity_present) | ||
1808 | printk(KERN_INFO "Cache parity protection %sabled\n", | ||
1809 | (errctl & ERRCTL_PE) ? "en" : "dis"); | ||
1810 | |||
1811 | if (l2parity_present) { | ||
1812 | if (l1parity_present && l1parity) | ||
1813 | errctl ^= ERRCTL_L2P; | ||
1814 | printk(KERN_INFO "L2 cache parity protection %sabled\n", | ||
1815 | (errctl & ERRCTL_L2P) ? "en" : "dis"); | ||
1816 | } | ||
1817 | } | ||
1818 | break; | ||
1819 | |||
1820 | case CPU_5KC: | ||
1821 | case CPU_5KE: | ||
1822 | case CPU_LOONGSON32: | ||
1823 | write_c0_ecc(0x80000000); | ||
1824 | back_to_back_c0_hazard(); | ||
1825 | /* Set the PE bit (bit 31) in the c0_errctl register. */ | ||
1826 | printk(KERN_INFO "Cache parity protection %sabled\n", | ||
1827 | (read_c0_ecc() & 0x80000000) ? "en" : "dis"); | ||
1828 | break; | ||
1829 | case CPU_20KC: | ||
1830 | case CPU_25KF: | ||
1831 | /* Clear the DE bit (bit 16) in the c0_status register. */ | ||
1832 | printk(KERN_INFO "Enable cache parity protection for " | ||
1833 | "MIPS 20KC/25KF CPUs.\n"); | ||
1834 | clear_c0_status(ST0_DE); | ||
1835 | break; | ||
1836 | default: | ||
1837 | break; | ||
1838 | } | ||
1839 | } | ||
1840 | |||
1841 | asmlinkage void cache_parity_error(void) | ||
1842 | { | ||
1843 | const int field = 2 * sizeof(unsigned long); | ||
1844 | unsigned int reg_val; | ||
1845 | |||
1846 | /* For the moment, report the problem and hang. */ | ||
1847 | printk("Cache error exception:\n"); | ||
1848 | printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); | ||
1849 | reg_val = read_c0_cacheerr(); | ||
1850 | printk("c0_cacheerr == %08x\n", reg_val); | ||
1851 | |||
1852 | printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", | ||
1853 | reg_val & (1<<30) ? "secondary" : "primary", | ||
1854 | reg_val & (1<<31) ? "data" : "insn"); | ||
1855 | if ((cpu_has_mips_r2_r6) && | ||
1856 | ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { | ||
1857 | pr_err("Error bits: %s%s%s%s%s%s%s%s\n", | ||
1858 | reg_val & (1<<29) ? "ED " : "", | ||
1859 | reg_val & (1<<28) ? "ET " : "", | ||
1860 | reg_val & (1<<27) ? "ES " : "", | ||
1861 | reg_val & (1<<26) ? "EE " : "", | ||
1862 | reg_val & (1<<25) ? "EB " : "", | ||
1863 | reg_val & (1<<24) ? "EI " : "", | ||
1864 | reg_val & (1<<23) ? "E1 " : "", | ||
1865 | reg_val & (1<<22) ? "E0 " : ""); | ||
1866 | } else { | ||
1867 | pr_err("Error bits: %s%s%s%s%s%s%s\n", | ||
1868 | reg_val & (1<<29) ? "ED " : "", | ||
1869 | reg_val & (1<<28) ? "ET " : "", | ||
1870 | reg_val & (1<<26) ? "EE " : "", | ||
1871 | reg_val & (1<<25) ? "EB " : "", | ||
1872 | reg_val & (1<<24) ? "EI " : "", | ||
1873 | reg_val & (1<<23) ? "E1 " : "", | ||
1874 | reg_val & (1<<22) ? "E0 " : ""); | ||
1875 | } | ||
1876 | printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); | ||
1877 | |||
1878 | #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) | ||
1879 | if (reg_val & (1<<22)) | ||
1880 | printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); | ||
1881 | |||
1882 | if (reg_val & (1<<23)) | ||
1883 | printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); | ||
1884 | #endif | ||
1885 | |||
1886 | panic("Can't handle the cache error!"); | ||
1887 | } | ||
1888 | |||
1889 | asmlinkage void do_ftlb(void) | ||
1890 | { | ||
1891 | const int field = 2 * sizeof(unsigned long); | ||
1892 | unsigned int reg_val; | ||
1893 | |||
1894 | /* For the moment, report the problem and hang. */ | ||
1895 | if ((cpu_has_mips_r2_r6) && | ||
1896 | (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || | ||
1897 | ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { | ||
1898 | pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", | ||
1899 | read_c0_ecc()); | ||
1900 | pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); | ||
1901 | reg_val = read_c0_cacheerr(); | ||
1902 | pr_err("c0_cacheerr == %08x\n", reg_val); | ||
1903 | |||
1904 | if ((reg_val & 0xc0000000) == 0xc0000000) { | ||
1905 | pr_err("Decoded c0_cacheerr: FTLB parity error\n"); | ||
1906 | } else { | ||
1907 | pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", | ||
1908 | reg_val & (1<<30) ? "secondary" : "primary", | ||
1909 | reg_val & (1<<31) ? "data" : "insn"); | ||
1910 | } | ||
1911 | } else { | ||
1912 | pr_err("FTLB error exception\n"); | ||
1913 | } | ||
1914 | /* Just print the cacheerr bits for now */ | ||
1915 | cache_parity_error(); | ||
1916 | } | ||
1917 | |||
1918 | asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1) | ||
1919 | { | ||
1920 | u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >> | ||
1921 | LOONGSON_DIAG1_EXCCODE_SHIFT; | ||
1922 | enum ctx_state prev_state; | ||
1923 | |||
1924 | prev_state = exception_enter(); | ||
1925 | |||
1926 | switch (exccode) { | ||
1927 | case 0x08: | ||
1928 | /* Undocumented exception, will trigger on certain | ||
1929 | * also-undocumented instructions accessible from userspace. | ||
1930 | * Processor state is not otherwise corrupted, but currently | ||
1931 | * we don't know how to proceed. Maybe there is some | ||
1932 | * undocumented control flag to enable the instructions? | ||
1933 | */ | ||
1934 | force_sig(SIGILL); | ||
1935 | break; | ||
1936 | |||
1937 | default: | ||
1938 | /* None of the other exceptions, documented or not, have | ||
1939 | * further details given; none are encountered in the wild | ||
1940 | * either. Panic in case some of them turn out to be fatal. | ||
1941 | */ | ||
1942 | show_regs(regs); | ||
1943 | panic("Unhandled Loongson exception - GSCause = %08x", diag1); | ||
1944 | } | ||
1945 | |||
1946 | exception_exit(prev_state); | ||
1947 | } | ||
1948 | |||
1949 | /* | ||
1950 | * SDBBP EJTAG debug exception handler. | ||
1951 | * We skip the instruction and return to the next instruction. | ||
1952 | */ | ||
1953 | void ejtag_exception_handler(struct pt_regs *regs) | ||
1954 | { | ||
1955 | const int field = 2 * sizeof(unsigned long); | ||
1956 | unsigned long depc, old_epc, old_ra; | ||
1957 | unsigned int debug; | ||
1958 | |||
1959 | printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); | ||
1960 | depc = read_c0_depc(); | ||
1961 | debug = read_c0_debug(); | ||
1962 | printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); | ||
1963 | if (debug & 0x80000000) { | ||
1964 | /* | ||
1965 | * In branch delay slot. | ||
1966 | * We cheat a little bit here and use EPC to calculate the | ||
1967 | * debug return address (DEPC). EPC is restored after the | ||
1968 | * calculation. | ||
1969 | */ | ||
1970 | old_epc = regs->cp0_epc; | ||
1971 | old_ra = regs->regs[31]; | ||
1972 | regs->cp0_epc = depc; | ||
1973 | compute_return_epc(regs); | ||
1974 | depc = regs->cp0_epc; | ||
1975 | regs->cp0_epc = old_epc; | ||
1976 | regs->regs[31] = old_ra; | ||
1977 | } else | ||
1978 | depc += 4; | ||
1979 | write_c0_depc(depc); | ||
1980 | |||
1981 | #if 0 | ||
1982 | printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); | ||
1983 | write_c0_debug(debug | 0x100); | ||
1984 | #endif | ||
1985 | } | ||
1986 | |||
1987 | /* | ||
1988 | * NMI exception handler. | ||
1989 | * No lock; only written during early bootup by CPU 0. | ||
1990 | */ | ||
1991 | static RAW_NOTIFIER_HEAD(nmi_chain); | ||
1992 | |||
1993 | int register_nmi_notifier(struct notifier_block *nb) | ||
1994 | { | ||
1995 | return raw_notifier_chain_register(&nmi_chain, nb); | ||
1996 | } | ||
1997 | |||
1998 | void __noreturn nmi_exception_handler(struct pt_regs *regs) | ||
1999 | { | ||
2000 | char str[100]; | ||
2001 | |||
2002 | nmi_enter(); | ||
2003 | raw_notifier_call_chain(&nmi_chain, 0, regs); | ||
2004 | bust_spinlocks(1); | ||
2005 | snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", | ||
2006 | smp_processor_id(), regs->cp0_epc); | ||
2007 | regs->cp0_epc = read_c0_errorepc(); | ||
2008 | die(str, regs); | ||
2009 | nmi_exit(); | ||
2010 | } | ||
2011 | |||
2012 | #define VECTORSPACING 0x100 /* for EI/VI mode */ | ||
2013 | |||
2014 | unsigned long ebase; | ||
2015 | EXPORT_SYMBOL_GPL(ebase); | ||
2016 | unsigned long exception_handlers[32]; | ||
2017 | unsigned long vi_handlers[64]; | ||
2018 | |||
2019 | void __init *set_except_vector(int n, void *addr) | ||
2020 | { | ||
2021 | unsigned long handler = (unsigned long) addr; | ||
2022 | unsigned long old_handler; | ||
2023 | |||
2024 | #ifdef CONFIG_CPU_MICROMIPS | ||
2025 | /* | ||
2026 | * Only the TLB handlers are cache aligned with an even | ||
2027 | * address. All other handlers are on an odd address and | ||
2028 | * require no modification. Otherwise, MIPS32 mode will | ||
2029 | * be entered when handling any TLB exceptions. That | ||
2030 | * would be bad...since we must stay in microMIPS mode. | ||
2031 | */ | ||
2032 | if (!(handler & 0x1)) | ||
2033 | handler |= 1; | ||
2034 | #endif | ||
2035 | old_handler = xchg(&exception_handlers[n], handler); | ||
2036 | |||
2037 | if (n == 0 && cpu_has_divec) { | ||
2038 | #ifdef CONFIG_CPU_MICROMIPS | ||
2039 | unsigned long jump_mask = ~((1 << 27) - 1); | ||
2040 | #else | ||
2041 | unsigned long jump_mask = ~((1 << 28) - 1); | ||
2042 | #endif | ||
2043 | u32 *buf = (u32 *)(ebase + 0x200); | ||
2044 | unsigned int k0 = 26; | ||
2045 | if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { | ||
2046 | uasm_i_j(&buf, handler & ~jump_mask); | ||
2047 | uasm_i_nop(&buf); | ||
2048 | } else { | ||
2049 | UASM_i_LA(&buf, k0, handler); | ||
2050 | uasm_i_jr(&buf, k0); | ||
2051 | uasm_i_nop(&buf); | ||
2052 | } | ||
2053 | local_flush_icache_range(ebase + 0x200, (unsigned long)buf); | ||
2054 | } | ||
2055 | return (void *)old_handler; | ||
2056 | } | ||
2057 | |||
2058 | static void do_default_vi(void) | ||
2059 | { | ||
2060 | show_regs(get_irq_regs()); | ||
2061 | panic("Caught unexpected vectored interrupt."); | ||
2062 | } | ||
2063 | |||
2064 | static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) | ||
2065 | { | ||
2066 | unsigned long handler; | ||
2067 | unsigned long old_handler = vi_handlers[n]; | ||
2068 | int srssets = current_cpu_data.srsets; | ||
2069 | u16 *h; | ||
2070 | unsigned char *b; | ||
2071 | |||
2072 | BUG_ON(!cpu_has_veic && !cpu_has_vint); | ||
2073 | |||
2074 | if (addr == NULL) { | ||
2075 | handler = (unsigned long) do_default_vi; | ||
2076 | srs = 0; | ||
2077 | } else | ||
2078 | handler = (unsigned long) addr; | ||
2079 | vi_handlers[n] = handler; | ||
2080 | |||
2081 | b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); | ||
2082 | |||
2083 | if (srs >= srssets) | ||
2084 | panic("Shadow register set %d not supported", srs); | ||
2085 | |||
2086 | if (cpu_has_veic) { | ||
2087 | if (board_bind_eic_interrupt) | ||
2088 | board_bind_eic_interrupt(n, srs); | ||
2089 | } else if (cpu_has_vint) { | ||
2090 | /* SRSMap is only defined if shadow sets are implemented */ | ||
2091 | if (srssets > 1) | ||
2092 | change_c0_srsmap(0xf << n*4, srs << n*4); | ||
2093 | } | ||
2094 | |||
2095 | if (srs == 0) { | ||
2096 | /* | ||
2097 | * If no shadow set is selected then use the default handler | ||
2098 | * that does normal register saving and standard interrupt exit | ||
2099 | */ | ||
2100 | extern const u8 except_vec_vi[], except_vec_vi_lui[]; | ||
2101 | extern const u8 except_vec_vi_ori[], except_vec_vi_end[]; | ||
2102 | extern const u8 rollback_except_vec_vi[]; | ||
2103 | const u8 *vec_start = using_rollback_handler() ? | ||
2104 | rollback_except_vec_vi : except_vec_vi; | ||
2105 | #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) | ||
2106 | const int lui_offset = except_vec_vi_lui - vec_start + 2; | ||
2107 | const int ori_offset = except_vec_vi_ori - vec_start + 2; | ||
2108 | #else | ||
2109 | const int lui_offset = except_vec_vi_lui - vec_start; | ||
2110 | const int ori_offset = except_vec_vi_ori - vec_start; | ||
2111 | #endif | ||
2112 | const int handler_len = except_vec_vi_end - vec_start; | ||
2113 | |||
2114 | if (handler_len > VECTORSPACING) { | ||
2115 | /* | ||
2116 | * Sigh... panicing won't help as the console | ||
2117 | * is probably not configured :( | ||
2118 | */ | ||
2119 | panic("VECTORSPACING too small"); | ||
2120 | } | ||
2121 | |||
2122 | set_handler(((unsigned long)b - ebase), vec_start, | ||
2123 | #ifdef CONFIG_CPU_MICROMIPS | ||
2124 | (handler_len - 1)); | ||
2125 | #else | ||
2126 | handler_len); | ||
2127 | #endif | ||
2128 | h = (u16 *)(b + lui_offset); | ||
2129 | *h = (handler >> 16) & 0xffff; | ||
2130 | h = (u16 *)(b + ori_offset); | ||
2131 | *h = (handler & 0xffff); | ||
2132 | local_flush_icache_range((unsigned long)b, | ||
2133 | (unsigned long)(b+handler_len)); | ||
2134 | } | ||
2135 | else { | ||
2136 | /* | ||
2137 | * In other cases jump directly to the interrupt handler. It | ||
2138 | * is the handler's responsibility to save registers if required | ||
2139 | * (eg hi/lo) and return from the exception using "eret". | ||
2140 | */ | ||
2141 | u32 insn; | ||
2142 | |||
2143 | h = (u16 *)b; | ||
2144 | /* j handler */ | ||
2145 | #ifdef CONFIG_CPU_MICROMIPS | ||
2146 | insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); | ||
2147 | #else | ||
2148 | insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); | ||
2149 | #endif | ||
2150 | h[0] = (insn >> 16) & 0xffff; | ||
2151 | h[1] = insn & 0xffff; | ||
2152 | h[2] = 0; | ||
2153 | h[3] = 0; | ||
2154 | local_flush_icache_range((unsigned long)b, | ||
2155 | (unsigned long)(b+8)); | ||
2156 | } | ||
2157 | |||
2158 | return (void *)old_handler; | ||
2159 | } | ||
2160 | |||
2161 | void *set_vi_handler(int n, vi_handler_t addr) | ||
2162 | { | ||
2163 | return set_vi_srs_handler(n, addr, 0); | ||
2164 | } | ||
2165 | |||
2166 | extern void tlb_init(void); | ||
2167 | |||
2168 | /* | ||
2169 | * Timer interrupt | ||
2170 | */ | ||
2171 | int cp0_compare_irq; | ||
2172 | EXPORT_SYMBOL_GPL(cp0_compare_irq); | ||
2173 | int cp0_compare_irq_shift; | ||
2174 | |||
2175 | /* | ||
2176 | * Performance counter IRQ or -1 if shared with timer | ||
2177 | */ | ||
2178 | int cp0_perfcount_irq; | ||
2179 | EXPORT_SYMBOL_GPL(cp0_perfcount_irq); | ||
2180 | |||
2181 | /* | ||
2182 | * Fast debug channel IRQ or -1 if not present | ||
2183 | */ | ||
2184 | int cp0_fdc_irq; | ||
2185 | EXPORT_SYMBOL_GPL(cp0_fdc_irq); | ||
2186 | |||
2187 | static int noulri; | ||
2188 | |||
2189 | static int __init ulri_disable(char *s) | ||
2190 | { | ||
2191 | pr_info("Disabling ulri\n"); | ||
2192 | noulri = 1; | ||
2193 | |||
2194 | return 1; | ||
2195 | } | ||
2196 | __setup("noulri", ulri_disable); | ||
2197 | |||
2198 | /* configure STATUS register */ | ||
2199 | static void configure_status(void) | ||
2200 | { | ||
2201 | /* | ||
2202 | * Disable coprocessors and select 32-bit or 64-bit addressing | ||
2203 | * and the 16/32 or 32/32 FPR register model. Reset the BEV | ||
2204 | * flag that some firmware may have left set and the TS bit (for | ||
2205 | * IP27). Set XX for ISA IV code to work. | ||
2206 | */ | ||
2207 | unsigned int status_set = ST0_KERNEL_CUMASK; | ||
2208 | #ifdef CONFIG_64BIT | ||
2209 | status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; | ||
2210 | #endif | ||
2211 | if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) | ||
2212 | status_set |= ST0_XX; | ||
2213 | if (cpu_has_dsp) | ||
2214 | status_set |= ST0_MX; | ||
2215 | |||
2216 | change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, | ||
2217 | status_set); | ||
2218 | back_to_back_c0_hazard(); | ||
2219 | } | ||
2220 | |||
2221 | unsigned int hwrena; | ||
2222 | EXPORT_SYMBOL_GPL(hwrena); | ||
2223 | |||
2224 | /* configure HWRENA register */ | ||
2225 | static void configure_hwrena(void) | ||
2226 | { | ||
2227 | hwrena = cpu_hwrena_impl_bits; | ||
2228 | |||
2229 | if (cpu_has_mips_r2_r6) | ||
2230 | hwrena |= MIPS_HWRENA_CPUNUM | | ||
2231 | MIPS_HWRENA_SYNCISTEP | | ||
2232 | MIPS_HWRENA_CC | | ||
2233 | MIPS_HWRENA_CCRES; | ||
2234 | |||
2235 | if (!noulri && cpu_has_userlocal) | ||
2236 | hwrena |= MIPS_HWRENA_ULR; | ||
2237 | |||
2238 | if (hwrena) | ||
2239 | write_c0_hwrena(hwrena); | ||
2240 | } | ||
2241 | |||
2242 | static void configure_exception_vector(void) | ||
2243 | { | ||
2244 | if (cpu_has_mips_r2_r6) { | ||
2245 | unsigned long sr = set_c0_status(ST0_BEV); | ||
2246 | /* If available, use WG to set top bits of EBASE */ | ||
2247 | if (cpu_has_ebase_wg) { | ||
2248 | #ifdef CONFIG_64BIT | ||
2249 | write_c0_ebase_64(ebase | MIPS_EBASE_WG); | ||
2250 | #else | ||
2251 | write_c0_ebase(ebase | MIPS_EBASE_WG); | ||
2252 | #endif | ||
2253 | } | ||
2254 | write_c0_ebase(ebase); | ||
2255 | write_c0_status(sr); | ||
2256 | } | ||
2257 | if (cpu_has_veic || cpu_has_vint) { | ||
2258 | /* Setting vector spacing enables EI/VI mode */ | ||
2259 | change_c0_intctl(0x3e0, VECTORSPACING); | ||
2260 | } | ||
2261 | if (cpu_has_divec) { | ||
2262 | if (cpu_has_mipsmt) { | ||
2263 | unsigned int vpflags = dvpe(); | ||
2264 | set_c0_cause(CAUSEF_IV); | ||
2265 | evpe(vpflags); | ||
2266 | } else | ||
2267 | set_c0_cause(CAUSEF_IV); | ||
2268 | } | ||
2269 | } | ||
2270 | |||
2271 | void per_cpu_trap_init(bool is_boot_cpu) | ||
2272 | { | ||
2273 | unsigned int cpu = smp_processor_id(); | ||
2274 | |||
2275 | configure_status(); | ||
2276 | configure_hwrena(); | ||
2277 | |||
2278 | configure_exception_vector(); | ||
2279 | |||
2280 | /* | ||
2281 | * Before R2 both interrupt numbers were fixed to 7, so on R2 only: | ||
2282 | * | ||
2283 | * o read IntCtl.IPTI to determine the timer interrupt | ||
2284 | * o read IntCtl.IPPCI to determine the performance counter interrupt | ||
2285 | * o read IntCtl.IPFDC to determine the fast debug channel interrupt | ||
2286 | */ | ||
2287 | if (cpu_has_mips_r2_r6) { | ||
2288 | cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; | ||
2289 | cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; | ||
2290 | cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; | ||
2291 | cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; | ||
2292 | if (!cp0_fdc_irq) | ||
2293 | cp0_fdc_irq = -1; | ||
2294 | |||
2295 | } else { | ||
2296 | cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; | ||
2297 | cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; | ||
2298 | cp0_perfcount_irq = -1; | ||
2299 | cp0_fdc_irq = -1; | ||
2300 | } | ||
2301 | |||
2302 | if (cpu_has_mmid) | ||
2303 | cpu_data[cpu].asid_cache = 0; | ||
2304 | else if (!cpu_data[cpu].asid_cache) | ||
2305 | cpu_data[cpu].asid_cache = asid_first_version(cpu); | ||
2306 | |||
2307 | mmgrab(&init_mm); | ||
2308 | current->active_mm = &init_mm; | ||
2309 | BUG_ON(current->mm); | ||
2310 | enter_lazy_tlb(&init_mm, current); | ||
2311 | |||
2312 | /* Boot CPU's cache setup in setup_arch(). */ | ||
2313 | if (!is_boot_cpu) | ||
2314 | cpu_cache_init(); | ||
2315 | tlb_init(); | ||
2316 | TLBMISS_HANDLER_SETUP(); | ||
2317 | } | ||
2318 | |||
2319 | /* Install CPU exception handler */ | ||
2320 | void set_handler(unsigned long offset, const void *addr, unsigned long size) | ||
2321 | { | ||
2322 | #ifdef CONFIG_CPU_MICROMIPS | ||
2323 | memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); | ||
2324 | #else | ||
2325 | memcpy((void *)(ebase + offset), addr, size); | ||
2326 | #endif | ||
2327 | local_flush_icache_range(ebase + offset, ebase + offset + size); | ||
2328 | } | ||
2329 | |||
2330 | static const char panic_null_cerr[] = | ||
2331 | "Trying to set NULL cache error exception handler\n"; | ||
2332 | |||
2333 | /* | ||
2334 | * Install uncached CPU exception handler. | ||
2335 | * This is suitable only for the cache error exception which is the only | ||
2336 | * exception handler that is being run uncached. | ||
2337 | */ | ||
2338 | void set_uncached_handler(unsigned long offset, void *addr, | ||
2339 | unsigned long size) | ||
2340 | { | ||
2341 | unsigned long uncached_ebase = CKSEG1ADDR(ebase); | ||
2342 | |||
2343 | if (!addr) | ||
2344 | panic(panic_null_cerr); | ||
2345 | |||
2346 | memcpy((void *)(uncached_ebase + offset), addr, size); | ||
2347 | } | ||
2348 | |||
2349 | static int __initdata rdhwr_noopt; | ||
2350 | static int __init set_rdhwr_noopt(char *str) | ||
2351 | { | ||
2352 | rdhwr_noopt = 1; | ||
2353 | return 1; | ||
2354 | } | ||
2355 | |||
2356 | __setup("rdhwr_noopt", set_rdhwr_noopt); | ||
2357 | |||
2358 | void __init trap_init(void) | ||
2359 | { | ||
2360 | extern char except_vec3_generic; | ||
2361 | extern char except_vec4; | ||
2362 | extern char except_vec3_r4000; | ||
2363 | unsigned long i, vec_size; | ||
2364 | phys_addr_t ebase_pa; | ||
2365 | |||
2366 | check_wait(); | ||
2367 | |||
2368 | if (!cpu_has_mips_r2_r6) { | ||
2369 | ebase = CAC_BASE; | ||
2370 | ebase_pa = virt_to_phys((void *)ebase); | ||
2371 | vec_size = 0x400; | ||
2372 | |||
2373 | memblock_reserve(ebase_pa, vec_size); | ||
2374 | } else { | ||
2375 | if (cpu_has_veic || cpu_has_vint) | ||
2376 | vec_size = 0x200 + VECTORSPACING*64; | ||
2377 | else | ||
2378 | vec_size = PAGE_SIZE; | ||
2379 | |||
2380 | ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size)); | ||
2381 | if (!ebase_pa) | ||
2382 | panic("%s: Failed to allocate %lu bytes align=0x%x\n", | ||
2383 | __func__, vec_size, 1 << fls(vec_size)); | ||
2384 | |||
2385 | /* | ||
2386 | * Try to ensure ebase resides in KSeg0 if possible. | ||
2387 | * | ||
2388 | * It shouldn't generally be in XKPhys on MIPS64 to avoid | ||
2389 | * hitting a poorly defined exception base for Cache Errors. | ||
2390 | * The allocation is likely to be in the low 512MB of physical, | ||
2391 | * in which case we should be able to convert to KSeg0. | ||
2392 | * | ||
2393 | * EVA is special though as it allows segments to be rearranged | ||
2394 | * and to become uncached during cache error handling. | ||
2395 | */ | ||
2396 | if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) | ||
2397 | ebase = CKSEG0ADDR(ebase_pa); | ||
2398 | else | ||
2399 | ebase = (unsigned long)phys_to_virt(ebase_pa); | ||
2400 | } | ||
2401 | |||
2402 | if (cpu_has_mmips) { | ||
2403 | unsigned int config3 = read_c0_config3(); | ||
2404 | |||
2405 | if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) | ||
2406 | write_c0_config3(config3 | MIPS_CONF3_ISA_OE); | ||
2407 | else | ||
2408 | write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); | ||
2409 | } | ||
2410 | |||
2411 | if (board_ebase_setup) | ||
2412 | board_ebase_setup(); | ||
2413 | per_cpu_trap_init(true); | ||
2414 | memblock_set_bottom_up(false); | ||
2415 | |||
2416 | /* | ||
2417 | * Copy the generic exception handlers to their final destination. | ||
2418 | * This will be overridden later as suitable for a particular | ||
2419 | * configuration. | ||
2420 | */ | ||
2421 | set_handler(0x180, &except_vec3_generic, 0x80); | ||
2422 | |||
2423 | /* | ||
2424 | * Setup default vectors | ||
2425 | */ | ||
2426 | for (i = 0; i <= 31; i++) | ||
2427 | set_except_vector(i, handle_reserved); | ||
2428 | |||
2429 | /* | ||
2430 | * Copy the EJTAG debug exception vector handler code to it's final | ||
2431 | * destination. | ||
2432 | */ | ||
2433 | if (cpu_has_ejtag && board_ejtag_handler_setup) | ||
2434 | board_ejtag_handler_setup(); | ||
2435 | |||
2436 | /* | ||
2437 | * Only some CPUs have the watch exceptions. | ||
2438 | */ | ||
2439 | if (cpu_has_watch) | ||
2440 | set_except_vector(EXCCODE_WATCH, handle_watch); | ||
2441 | |||
2442 | /* | ||
2443 | * Initialise interrupt handlers | ||
2444 | */ | ||
2445 | if (cpu_has_veic || cpu_has_vint) { | ||
2446 | int nvec = cpu_has_veic ? 64 : 8; | ||
2447 | for (i = 0; i < nvec; i++) | ||
2448 | set_vi_handler(i, NULL); | ||
2449 | } | ||
2450 | else if (cpu_has_divec) | ||
2451 | set_handler(0x200, &except_vec4, 0x8); | ||
2452 | |||
2453 | /* | ||
2454 | * Some CPUs can enable/disable for cache parity detection, but does | ||
2455 | * it different ways. | ||
2456 | */ | ||
2457 | parity_protection_init(); | ||
2458 | |||
2459 | /* | ||
2460 | * The Data Bus Errors / Instruction Bus Errors are signaled | ||
2461 | * by external hardware. Therefore these two exceptions | ||
2462 | * may have board specific handlers. | ||
2463 | */ | ||
2464 | if (board_be_init) | ||
2465 | board_be_init(); | ||
2466 | |||
2467 | set_except_vector(EXCCODE_INT, using_rollback_handler() ? | ||
2468 | rollback_handle_int : handle_int); | ||
2469 | set_except_vector(EXCCODE_MOD, handle_tlbm); | ||
2470 | set_except_vector(EXCCODE_TLBL, handle_tlbl); | ||
2471 | set_except_vector(EXCCODE_TLBS, handle_tlbs); | ||
2472 | |||
2473 | set_except_vector(EXCCODE_ADEL, handle_adel); | ||
2474 | set_except_vector(EXCCODE_ADES, handle_ades); | ||
2475 | |||
2476 | set_except_vector(EXCCODE_IBE, handle_ibe); | ||
2477 | set_except_vector(EXCCODE_DBE, handle_dbe); | ||
2478 | |||
2479 | set_except_vector(EXCCODE_SYS, handle_sys); | ||
2480 | set_except_vector(EXCCODE_BP, handle_bp); | ||
2481 | |||
2482 | if (rdhwr_noopt) | ||
2483 | set_except_vector(EXCCODE_RI, handle_ri); | ||
2484 | else { | ||
2485 | if (cpu_has_vtag_icache) | ||
2486 | set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); | ||
2487 | else if (current_cpu_type() == CPU_LOONGSON64) | ||
2488 | set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); | ||
2489 | else | ||
2490 | set_except_vector(EXCCODE_RI, handle_ri_rdhwr); | ||
2491 | } | ||
2492 | |||
2493 | set_except_vector(EXCCODE_CPU, handle_cpu); | ||
2494 | set_except_vector(EXCCODE_OV, handle_ov); | ||
2495 | set_except_vector(EXCCODE_TR, handle_tr); | ||
2496 | set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); | ||
2497 | |||
2498 | if (board_nmi_handler_setup) | ||
2499 | board_nmi_handler_setup(); | ||
2500 | |||
2501 | if (cpu_has_fpu && !cpu_has_nofpuex) | ||
2502 | set_except_vector(EXCCODE_FPE, handle_fpe); | ||
2503 | |||
2504 | if (cpu_has_ftlbparex) | ||
2505 | set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); | ||
2506 | |||
2507 | if (cpu_has_gsexcex) | ||
2508 | set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc); | ||
2509 | |||
2510 | if (cpu_has_rixiex) { | ||
2511 | set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); | ||
2512 | set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); | ||
2513 | } | ||
2514 | |||
2515 | set_except_vector(EXCCODE_MSADIS, handle_msa); | ||
2516 | set_except_vector(EXCCODE_MDMX, handle_mdmx); | ||
2517 | |||
2518 | if (cpu_has_mcheck) | ||
2519 | set_except_vector(EXCCODE_MCHECK, handle_mcheck); | ||
2520 | |||
2521 | if (cpu_has_mipsmt) | ||
2522 | set_except_vector(EXCCODE_THREAD, handle_mt); | ||
2523 | |||
2524 | set_except_vector(EXCCODE_DSPDIS, handle_dsp); | ||
2525 | |||
2526 | if (board_cache_error_setup) | ||
2527 | board_cache_error_setup(); | ||
2528 | |||
2529 | if (cpu_has_vce) | ||
2530 | /* Special exception: R4[04]00 uses also the divec space. */ | ||
2531 | set_handler(0x180, &except_vec3_r4000, 0x100); | ||
2532 | else if (cpu_has_4kex) | ||
2533 | set_handler(0x180, &except_vec3_generic, 0x80); | ||
2534 | else | ||
2535 | set_handler(0x080, &except_vec3_generic, 0x80); | ||
2536 | |||
2537 | local_flush_icache_range(ebase, ebase + vec_size); | ||
2538 | |||
2539 | sort_extable(__start___dbe_table, __stop___dbe_table); | ||
2540 | |||
2541 | cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ | ||
2542 | } | ||
2543 | |||
2544 | static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, | ||
2545 | void *v) | ||
2546 | { | ||
2547 | switch (cmd) { | ||
2548 | case CPU_PM_ENTER_FAILED: | ||
2549 | case CPU_PM_EXIT: | ||
2550 | configure_status(); | ||
2551 | configure_hwrena(); | ||
2552 | configure_exception_vector(); | ||
2553 | |||
2554 | /* Restore register with CPU number for TLB handlers */ | ||
2555 | TLBMISS_HANDLER_RESTORE(); | ||
2556 | |||
2557 | break; | ||
2558 | } | ||
2559 | |||
2560 | return NOTIFY_OK; | ||
2561 | } | ||
2562 | |||
2563 | static struct notifier_block trap_pm_notifier_block = { | ||
2564 | .notifier_call = trap_pm_notifier, | ||
2565 | }; | ||
2566 | |||
2567 | static int __init trap_pm_init(void) | ||
2568 | { | ||
2569 | return cpu_pm_register_notifier(&trap_pm_notifier_block); | ||
2570 | } | ||
2571 | arch_initcall(trap_pm_init); | ||