diff options
author | 2025-03-08 22:04:20 +0800 | |
---|---|---|
committer | 2025-03-08 22:04:20 +0800 | |
commit | a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a (patch) | |
tree | 84f21bd0bf7071bc5fc7dd989e77d7ceb5476682 /arch/mips/pci/msi-xlp.c | |
download | ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.tar.gz ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.zip |
Initial commit: OpenHarmony-v4.0-ReleaseOpenHarmony-v4.0-Release
Diffstat (limited to 'arch/mips/pci/msi-xlp.c')
-rw-r--r-- | arch/mips/pci/msi-xlp.c | 571 |
1 files changed, 571 insertions, 0 deletions
diff --git a/arch/mips/pci/msi-xlp.c b/arch/mips/pci/msi-xlp.c new file mode 100644 index 000000000..bb14335f8 --- /dev/null +++ b/arch/mips/pci/msi-xlp.c | |||
@@ -0,0 +1,571 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2003-2012 Broadcom Corporation | ||
3 | * All Rights Reserved | ||
4 | * | ||
5 | * This software is available to you under a choice of one of two | ||
6 | * licenses. You may choose to be licensed under the terms of the GNU | ||
7 | * General Public License (GPL) Version 2, available from the file | ||
8 | * COPYING in the main directory of this source tree, or the Broadcom | ||
9 | * license below: | ||
10 | * | ||
11 | * Redistribution and use in source and binary forms, with or without | ||
12 | * modification, are permitted provided that the following conditions | ||
13 | * are met: | ||
14 | * | ||
15 | * 1. Redistributions of source code must retain the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer. | ||
17 | * 2. Redistributions in binary form must reproduce the above copyright | ||
18 | * notice, this list of conditions and the following disclaimer in | ||
19 | * the documentation and/or other materials provided with the | ||
20 | * distribution. | ||
21 | * | ||
22 | * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR | ||
23 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
24 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
25 | * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE | ||
26 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||
27 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||
28 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | ||
29 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | ||
30 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | ||
31 | * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN | ||
32 | * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
33 | */ | ||
34 | |||
35 | #include <linux/types.h> | ||
36 | #include <linux/pci.h> | ||
37 | #include <linux/kernel.h> | ||
38 | #include <linux/init.h> | ||
39 | #include <linux/msi.h> | ||
40 | #include <linux/mm.h> | ||
41 | #include <linux/irq.h> | ||
42 | #include <linux/irqdesc.h> | ||
43 | #include <linux/console.h> | ||
44 | |||
45 | #include <asm/io.h> | ||
46 | |||
47 | #include <asm/netlogic/interrupt.h> | ||
48 | #include <asm/netlogic/haldefs.h> | ||
49 | #include <asm/netlogic/common.h> | ||
50 | #include <asm/netlogic/mips-extns.h> | ||
51 | |||
52 | #include <asm/netlogic/xlp-hal/iomap.h> | ||
53 | #include <asm/netlogic/xlp-hal/xlp.h> | ||
54 | #include <asm/netlogic/xlp-hal/pic.h> | ||
55 | #include <asm/netlogic/xlp-hal/pcibus.h> | ||
56 | #include <asm/netlogic/xlp-hal/bridge.h> | ||
57 | |||
58 | #define XLP_MSIVEC_PER_LINK 32 | ||
59 | #define XLP_MSIXVEC_TOTAL (cpu_is_xlp9xx() ? 128 : 32) | ||
60 | #define XLP_MSIXVEC_PER_LINK (cpu_is_xlp9xx() ? 32 : 8) | ||
61 | |||
62 | /* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */ | ||
63 | static inline int nlm_link_msiirq(int link, int msivec) | ||
64 | { | ||
65 | return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec; | ||
66 | } | ||
67 | |||
68 | /* get the link MSI vector from irq number */ | ||
69 | static inline int nlm_irq_msivec(int irq) | ||
70 | { | ||
71 | return (irq - NLM_MSI_VEC_BASE) % XLP_MSIVEC_PER_LINK; | ||
72 | } | ||
73 | |||
74 | /* get the link from the irq number */ | ||
75 | static inline int nlm_irq_msilink(int irq) | ||
76 | { | ||
77 | int total_msivec = XLP_MSIVEC_PER_LINK * PCIE_NLINKS; | ||
78 | |||
79 | return ((irq - NLM_MSI_VEC_BASE) % total_msivec) / | ||
80 | XLP_MSIVEC_PER_LINK; | ||
81 | } | ||
82 | |||
83 | /* | ||
84 | * For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because | ||
85 | * there are only 32 PIC interrupts for MSI. We split them statically | ||
86 | * and use 8 MSI-X vectors per link - this keeps the allocation and | ||
87 | * lookup simple. | ||
88 | * On XLP 9xx, there are 32 vectors per link, and the interrupts are | ||
89 | * not routed thru PIC, so we can use all 128 MSI-X vectors. | ||
90 | */ | ||
91 | static inline int nlm_link_msixirq(int link, int bit) | ||
92 | { | ||
93 | return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit; | ||
94 | } | ||
95 | |||
96 | /* get the link MSI vector from irq number */ | ||
97 | static inline int nlm_irq_msixvec(int irq) | ||
98 | { | ||
99 | return (irq - NLM_MSIX_VEC_BASE) % XLP_MSIXVEC_TOTAL; | ||
100 | } | ||
101 | |||
102 | /* get the link from MSIX vec */ | ||
103 | static inline int nlm_irq_msixlink(int msixvec) | ||
104 | { | ||
105 | return msixvec / XLP_MSIXVEC_PER_LINK; | ||
106 | } | ||
107 | |||
108 | /* | ||
109 | * Per link MSI and MSI-X information, set as IRQ handler data for | ||
110 | * MSI and MSI-X interrupts. | ||
111 | */ | ||
112 | struct xlp_msi_data { | ||
113 | struct nlm_soc_info *node; | ||
114 | uint64_t lnkbase; | ||
115 | uint32_t msi_enabled_mask; | ||
116 | uint32_t msi_alloc_mask; | ||
117 | uint32_t msix_alloc_mask; | ||
118 | spinlock_t msi_lock; | ||
119 | }; | ||
120 | |||
121 | /* | ||
122 | * MSI Chip definitions | ||
123 | * | ||
124 | * On XLP, there is a PIC interrupt associated with each PCIe link on the | ||
125 | * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa | ||
126 | * per link and 128 overall. | ||
127 | * | ||
128 | * When a device connected to the link raises a MSI interrupt, we get a | ||
129 | * link interrupt and we then have to look at PCIE_MSI_STATUS register at | ||
130 | * the bridge to map it to the IRQ | ||
131 | */ | ||
132 | static void xlp_msi_enable(struct irq_data *d) | ||
133 | { | ||
134 | struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); | ||
135 | unsigned long flags; | ||
136 | int vec; | ||
137 | |||
138 | vec = nlm_irq_msivec(d->irq); | ||
139 | spin_lock_irqsave(&md->msi_lock, flags); | ||
140 | md->msi_enabled_mask |= 1u << vec; | ||
141 | if (cpu_is_xlp9xx()) | ||
142 | nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN, | ||
143 | md->msi_enabled_mask); | ||
144 | else | ||
145 | nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask); | ||
146 | spin_unlock_irqrestore(&md->msi_lock, flags); | ||
147 | } | ||
148 | |||
149 | static void xlp_msi_disable(struct irq_data *d) | ||
150 | { | ||
151 | struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); | ||
152 | unsigned long flags; | ||
153 | int vec; | ||
154 | |||
155 | vec = nlm_irq_msivec(d->irq); | ||
156 | spin_lock_irqsave(&md->msi_lock, flags); | ||
157 | md->msi_enabled_mask &= ~(1u << vec); | ||
158 | if (cpu_is_xlp9xx()) | ||
159 | nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN, | ||
160 | md->msi_enabled_mask); | ||
161 | else | ||
162 | nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask); | ||
163 | spin_unlock_irqrestore(&md->msi_lock, flags); | ||
164 | } | ||
165 | |||
166 | static void xlp_msi_mask_ack(struct irq_data *d) | ||
167 | { | ||
168 | struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); | ||
169 | int link, vec; | ||
170 | |||
171 | link = nlm_irq_msilink(d->irq); | ||
172 | vec = nlm_irq_msivec(d->irq); | ||
173 | xlp_msi_disable(d); | ||
174 | |||
175 | /* Ack MSI on bridge */ | ||
176 | if (cpu_is_xlp9xx()) | ||
177 | nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_STATUS, 1u << vec); | ||
178 | else | ||
179 | nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec); | ||
180 | |||
181 | } | ||
182 | |||
183 | static struct irq_chip xlp_msi_chip = { | ||
184 | .name = "XLP-MSI", | ||
185 | .irq_enable = xlp_msi_enable, | ||
186 | .irq_disable = xlp_msi_disable, | ||
187 | .irq_mask_ack = xlp_msi_mask_ack, | ||
188 | .irq_unmask = xlp_msi_enable, | ||
189 | }; | ||
190 | |||
191 | /* | ||
192 | * XLP8XX/4XX/3XX/2XX: | ||
193 | * The MSI-X interrupt handling is different from MSI, there are 32 MSI-X | ||
194 | * interrupts generated by the PIC and each of these correspond to a MSI-X | ||
195 | * vector (0-31) that can be assigned. | ||
196 | * | ||
197 | * We divide the MSI-X vectors to 8 per link and do a per-link allocation | ||
198 | * | ||
199 | * XLP9XX: | ||
200 | * 32 MSI-X vectors are available per link, and the interrupts are not routed | ||
201 | * thru the PIC. PIC ack not needed. | ||
202 | * | ||
203 | * Enable and disable done using standard MSI functions. | ||
204 | */ | ||
205 | static void xlp_msix_mask_ack(struct irq_data *d) | ||
206 | { | ||
207 | struct xlp_msi_data *md; | ||
208 | int link, msixvec; | ||
209 | uint32_t status_reg, bit; | ||
210 | |||
211 | msixvec = nlm_irq_msixvec(d->irq); | ||
212 | link = nlm_irq_msixlink(msixvec); | ||
213 | pci_msi_mask_irq(d); | ||
214 | md = irq_data_get_irq_chip_data(d); | ||
215 | |||
216 | /* Ack MSI on bridge */ | ||
217 | if (cpu_is_xlp9xx()) { | ||
218 | status_reg = PCIE_9XX_MSIX_STATUSX(link); | ||
219 | bit = msixvec % XLP_MSIXVEC_PER_LINK; | ||
220 | } else { | ||
221 | status_reg = PCIE_MSIX_STATUS; | ||
222 | bit = msixvec; | ||
223 | } | ||
224 | nlm_write_reg(md->lnkbase, status_reg, 1u << bit); | ||
225 | |||
226 | if (!cpu_is_xlp9xx()) | ||
227 | nlm_pic_ack(md->node->picbase, | ||
228 | PIC_IRT_PCIE_MSIX_INDEX(msixvec)); | ||
229 | } | ||
230 | |||
231 | static struct irq_chip xlp_msix_chip = { | ||
232 | .name = "XLP-MSIX", | ||
233 | .irq_enable = pci_msi_unmask_irq, | ||
234 | .irq_disable = pci_msi_mask_irq, | ||
235 | .irq_mask_ack = xlp_msix_mask_ack, | ||
236 | .irq_unmask = pci_msi_unmask_irq, | ||
237 | }; | ||
238 | |||
239 | void arch_teardown_msi_irq(unsigned int irq) | ||
240 | { | ||
241 | } | ||
242 | |||
243 | /* | ||
244 | * Setup a PCIe link for MSI. By default, the links are in | ||
245 | * legacy interrupt mode. We will switch them to MSI mode | ||
246 | * at the first MSI request. | ||
247 | */ | ||
248 | static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr) | ||
249 | { | ||
250 | u32 val; | ||
251 | |||
252 | if (cpu_is_xlp9xx()) { | ||
253 | val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0); | ||
254 | if ((val & 0x200) == 0) { | ||
255 | val |= 0x200; /* MSI Interrupt enable */ | ||
256 | nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val); | ||
257 | } | ||
258 | } else { | ||
259 | val = nlm_read_reg(lnkbase, PCIE_INT_EN0); | ||
260 | if ((val & 0x200) == 0) { | ||
261 | val |= 0x200; | ||
262 | nlm_write_reg(lnkbase, PCIE_INT_EN0, val); | ||
263 | } | ||
264 | } | ||
265 | |||
266 | val = nlm_read_reg(lnkbase, 0x1); /* CMD */ | ||
267 | if ((val & 0x0400) == 0) { | ||
268 | val |= 0x0400; | ||
269 | nlm_write_reg(lnkbase, 0x1, val); | ||
270 | } | ||
271 | |||
272 | /* Update IRQ in the PCI irq reg */ | ||
273 | val = nlm_read_pci_reg(lnkbase, 0xf); | ||
274 | val &= ~0x1fu; | ||
275 | val |= (1 << 8) | lirq; | ||
276 | nlm_write_pci_reg(lnkbase, 0xf, val); | ||
277 | |||
278 | /* MSI addr */ | ||
279 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32); | ||
280 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff); | ||
281 | |||
282 | /* MSI cap for bridge */ | ||
283 | val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP); | ||
284 | if ((val & (1 << 16)) == 0) { | ||
285 | val |= 0xb << 16; /* mmc32, msi enable */ | ||
286 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val); | ||
287 | } | ||
288 | } | ||
289 | |||
290 | /* | ||
291 | * Allocate a MSI vector on a link | ||
292 | */ | ||
293 | static int xlp_setup_msi(uint64_t lnkbase, int node, int link, | ||
294 | struct msi_desc *desc) | ||
295 | { | ||
296 | struct xlp_msi_data *md; | ||
297 | struct msi_msg msg; | ||
298 | unsigned long flags; | ||
299 | int msivec, irt, lirq, xirq, ret; | ||
300 | uint64_t msiaddr; | ||
301 | |||
302 | /* Get MSI data for the link */ | ||
303 | lirq = PIC_PCIE_LINK_MSI_IRQ(link); | ||
304 | xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); | ||
305 | md = irq_get_chip_data(xirq); | ||
306 | msiaddr = MSI_LINK_ADDR(node, link); | ||
307 | |||
308 | spin_lock_irqsave(&md->msi_lock, flags); | ||
309 | if (md->msi_alloc_mask == 0) { | ||
310 | xlp_config_link_msi(lnkbase, lirq, msiaddr); | ||
311 | /* switch the link IRQ to MSI range */ | ||
312 | if (cpu_is_xlp9xx()) | ||
313 | irt = PIC_9XX_IRT_PCIE_LINK_INDEX(link); | ||
314 | else | ||
315 | irt = PIC_IRT_PCIE_LINK_INDEX(link); | ||
316 | nlm_setup_pic_irq(node, lirq, lirq, irt); | ||
317 | nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq, | ||
318 | node * nlm_threads_per_node(), 1 /*en */); | ||
319 | } | ||
320 | |||
321 | /* allocate a MSI vec, and tell the bridge about it */ | ||
322 | msivec = fls(md->msi_alloc_mask); | ||
323 | if (msivec == XLP_MSIVEC_PER_LINK) { | ||
324 | spin_unlock_irqrestore(&md->msi_lock, flags); | ||
325 | return -ENOMEM; | ||
326 | } | ||
327 | md->msi_alloc_mask |= (1u << msivec); | ||
328 | spin_unlock_irqrestore(&md->msi_lock, flags); | ||
329 | |||
330 | msg.address_hi = msiaddr >> 32; | ||
331 | msg.address_lo = msiaddr & 0xffffffff; | ||
332 | msg.data = 0xc00 | msivec; | ||
333 | |||
334 | xirq = xirq + msivec; /* msi mapped to global irq space */ | ||
335 | ret = irq_set_msi_desc(xirq, desc); | ||
336 | if (ret < 0) | ||
337 | return ret; | ||
338 | |||
339 | pci_write_msi_msg(xirq, &msg); | ||
340 | return 0; | ||
341 | } | ||
342 | |||
343 | /* | ||
344 | * Switch a link to MSI-X mode | ||
345 | */ | ||
346 | static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr) | ||
347 | { | ||
348 | u32 val; | ||
349 | |||
350 | val = nlm_read_reg(lnkbase, 0x2C); | ||
351 | if ((val & 0x80000000U) == 0) { | ||
352 | val |= 0x80000000U; | ||
353 | nlm_write_reg(lnkbase, 0x2C, val); | ||
354 | } | ||
355 | |||
356 | if (cpu_is_xlp9xx()) { | ||
357 | val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0); | ||
358 | if ((val & 0x200) == 0) { | ||
359 | val |= 0x200; /* MSI Interrupt enable */ | ||
360 | nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val); | ||
361 | } | ||
362 | } else { | ||
363 | val = nlm_read_reg(lnkbase, PCIE_INT_EN0); | ||
364 | if ((val & 0x200) == 0) { | ||
365 | val |= 0x200; /* MSI Interrupt enable */ | ||
366 | nlm_write_reg(lnkbase, PCIE_INT_EN0, val); | ||
367 | } | ||
368 | } | ||
369 | |||
370 | val = nlm_read_reg(lnkbase, 0x1); /* CMD */ | ||
371 | if ((val & 0x0400) == 0) { | ||
372 | val |= 0x0400; | ||
373 | nlm_write_reg(lnkbase, 0x1, val); | ||
374 | } | ||
375 | |||
376 | /* Update IRQ in the PCI irq reg */ | ||
377 | val = nlm_read_pci_reg(lnkbase, 0xf); | ||
378 | val &= ~0x1fu; | ||
379 | val |= (1 << 8) | lirq; | ||
380 | nlm_write_pci_reg(lnkbase, 0xf, val); | ||
381 | |||
382 | if (cpu_is_xlp9xx()) { | ||
383 | /* MSI-X addresses */ | ||
384 | nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE, | ||
385 | msixaddr >> 8); | ||
386 | nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT, | ||
387 | (msixaddr + MSI_ADDR_SZ) >> 8); | ||
388 | } else { | ||
389 | /* MSI-X addresses */ | ||
390 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE, | ||
391 | msixaddr >> 8); | ||
392 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT, | ||
393 | (msixaddr + MSI_ADDR_SZ) >> 8); | ||
394 | } | ||
395 | } | ||
396 | |||
397 | /* | ||
398 | * Allocate a MSI-X vector | ||
399 | */ | ||
400 | static int xlp_setup_msix(uint64_t lnkbase, int node, int link, | ||
401 | struct msi_desc *desc) | ||
402 | { | ||
403 | struct xlp_msi_data *md; | ||
404 | struct msi_msg msg; | ||
405 | unsigned long flags; | ||
406 | int t, msixvec, lirq, xirq, ret; | ||
407 | uint64_t msixaddr; | ||
408 | |||
409 | /* Get MSI data for the link */ | ||
410 | lirq = PIC_PCIE_MSIX_IRQ(link); | ||
411 | xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0)); | ||
412 | md = irq_get_chip_data(xirq); | ||
413 | msixaddr = MSIX_LINK_ADDR(node, link); | ||
414 | |||
415 | spin_lock_irqsave(&md->msi_lock, flags); | ||
416 | /* switch the PCIe link to MSI-X mode at the first alloc */ | ||
417 | if (md->msix_alloc_mask == 0) | ||
418 | xlp_config_link_msix(lnkbase, lirq, msixaddr); | ||
419 | |||
420 | /* allocate a MSI-X vec, and tell the bridge about it */ | ||
421 | t = fls(md->msix_alloc_mask); | ||
422 | if (t == XLP_MSIXVEC_PER_LINK) { | ||
423 | spin_unlock_irqrestore(&md->msi_lock, flags); | ||
424 | return -ENOMEM; | ||
425 | } | ||
426 | md->msix_alloc_mask |= (1u << t); | ||
427 | spin_unlock_irqrestore(&md->msi_lock, flags); | ||
428 | |||
429 | xirq += t; | ||
430 | msixvec = nlm_irq_msixvec(xirq); | ||
431 | |||
432 | msg.address_hi = msixaddr >> 32; | ||
433 | msg.address_lo = msixaddr & 0xffffffff; | ||
434 | msg.data = 0xc00 | msixvec; | ||
435 | |||
436 | ret = irq_set_msi_desc(xirq, desc); | ||
437 | if (ret < 0) | ||
438 | return ret; | ||
439 | |||
440 | pci_write_msi_msg(xirq, &msg); | ||
441 | return 0; | ||
442 | } | ||
443 | |||
444 | int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) | ||
445 | { | ||
446 | struct pci_dev *lnkdev; | ||
447 | uint64_t lnkbase; | ||
448 | int node, link, slot; | ||
449 | |||
450 | lnkdev = xlp_get_pcie_link(dev); | ||
451 | if (lnkdev == NULL) { | ||
452 | dev_err(&dev->dev, "Could not find bridge\n"); | ||
453 | return 1; | ||
454 | } | ||
455 | slot = PCI_SLOT(lnkdev->devfn); | ||
456 | link = PCI_FUNC(lnkdev->devfn); | ||
457 | node = slot / 8; | ||
458 | lnkbase = nlm_get_pcie_base(node, link); | ||
459 | |||
460 | if (desc->msi_attrib.is_msix) | ||
461 | return xlp_setup_msix(lnkbase, node, link, desc); | ||
462 | else | ||
463 | return xlp_setup_msi(lnkbase, node, link, desc); | ||
464 | } | ||
465 | |||
466 | void __init xlp_init_node_msi_irqs(int node, int link) | ||
467 | { | ||
468 | struct nlm_soc_info *nodep; | ||
469 | struct xlp_msi_data *md; | ||
470 | int irq, i, irt, msixvec, val; | ||
471 | |||
472 | pr_info("[%d %d] Init node PCI IRT\n", node, link); | ||
473 | nodep = nlm_get_node(node); | ||
474 | |||
475 | /* Alloc an MSI block for the link */ | ||
476 | md = kzalloc(sizeof(*md), GFP_KERNEL); | ||
477 | spin_lock_init(&md->msi_lock); | ||
478 | md->msi_enabled_mask = 0; | ||
479 | md->msi_alloc_mask = 0; | ||
480 | md->msix_alloc_mask = 0; | ||
481 | md->node = nodep; | ||
482 | md->lnkbase = nlm_get_pcie_base(node, link); | ||
483 | |||
484 | /* extended space for MSI interrupts */ | ||
485 | irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); | ||
486 | for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) { | ||
487 | irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq); | ||
488 | irq_set_chip_data(i, md); | ||
489 | } | ||
490 | |||
491 | for (i = 0; i < XLP_MSIXVEC_PER_LINK ; i++) { | ||
492 | if (cpu_is_xlp9xx()) { | ||
493 | val = ((node * nlm_threads_per_node()) << 7 | | ||
494 | PIC_PCIE_MSIX_IRQ(link) << 1 | 0 << 0); | ||
495 | nlm_write_pcie_reg(md->lnkbase, PCIE_9XX_MSIX_VECX(i + | ||
496 | (link * XLP_MSIXVEC_PER_LINK)), val); | ||
497 | } else { | ||
498 | /* Initialize MSI-X irts to generate one interrupt | ||
499 | * per link | ||
500 | */ | ||
501 | msixvec = link * XLP_MSIXVEC_PER_LINK + i; | ||
502 | irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec); | ||
503 | nlm_pic_init_irt(nodep->picbase, irt, | ||
504 | PIC_PCIE_MSIX_IRQ(link), | ||
505 | node * nlm_threads_per_node(), 1); | ||
506 | } | ||
507 | |||
508 | /* Initialize MSI-X extended irq space for the link */ | ||
509 | irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i)); | ||
510 | irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq); | ||
511 | irq_set_chip_data(irq, md); | ||
512 | } | ||
513 | } | ||
514 | |||
515 | void nlm_dispatch_msi(int node, int lirq) | ||
516 | { | ||
517 | struct xlp_msi_data *md; | ||
518 | int link, i, irqbase; | ||
519 | u32 status; | ||
520 | |||
521 | link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE; | ||
522 | irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); | ||
523 | md = irq_get_chip_data(irqbase); | ||
524 | if (cpu_is_xlp9xx()) | ||
525 | status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSI_STATUS) & | ||
526 | md->msi_enabled_mask; | ||
527 | else | ||
528 | status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) & | ||
529 | md->msi_enabled_mask; | ||
530 | while (status) { | ||
531 | i = __ffs(status); | ||
532 | do_IRQ(irqbase + i); | ||
533 | status &= status - 1; | ||
534 | } | ||
535 | |||
536 | /* Ack at eirr and PIC */ | ||
537 | ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link)); | ||
538 | if (cpu_is_xlp9xx()) | ||
539 | nlm_pic_ack(md->node->picbase, | ||
540 | PIC_9XX_IRT_PCIE_LINK_INDEX(link)); | ||
541 | else | ||
542 | nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link)); | ||
543 | } | ||
544 | |||
545 | void nlm_dispatch_msix(int node, int lirq) | ||
546 | { | ||
547 | struct xlp_msi_data *md; | ||
548 | int link, i, irqbase; | ||
549 | u32 status; | ||
550 | |||
551 | link = lirq - PIC_PCIE_MSIX_IRQ_BASE; | ||
552 | irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0)); | ||
553 | md = irq_get_chip_data(irqbase); | ||
554 | if (cpu_is_xlp9xx()) | ||
555 | status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSIX_STATUSX(link)); | ||
556 | else | ||
557 | status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS); | ||
558 | |||
559 | /* narrow it down to the MSI-x vectors for our link */ | ||
560 | if (!cpu_is_xlp9xx()) | ||
561 | status = (status >> (link * XLP_MSIXVEC_PER_LINK)) & | ||
562 | ((1 << XLP_MSIXVEC_PER_LINK) - 1); | ||
563 | |||
564 | while (status) { | ||
565 | i = __ffs(status); | ||
566 | do_IRQ(irqbase + i); | ||
567 | status &= status - 1; | ||
568 | } | ||
569 | /* Ack at eirr and PIC */ | ||
570 | ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link)); | ||
571 | } | ||