aboutsummaryrefslogtreecommitdiffstats
path: root/fs/kernfs
diff options
context:
space:
mode:
authorWe-unite <3205135446@qq.com>2025-03-08 22:04:20 +0800
committerWe-unite <3205135446@qq.com>2025-03-08 22:04:20 +0800
commita07bb8fd1299070229f0e8f3dcb57ffd5ef9870a (patch)
tree84f21bd0bf7071bc5fc7dd989e77d7ceb5476682 /fs/kernfs
downloadohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.tar.gz
ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.zip
Initial commit: OpenHarmony-v4.0-ReleaseOpenHarmony-v4.0-Release
Diffstat (limited to 'fs/kernfs')
-rw-r--r--fs/kernfs/Kconfig8
-rw-r--r--fs/kernfs/Makefile6
-rw-r--r--fs/kernfs/dir.c1716
-rw-r--r--fs/kernfs/file.c1020
-rw-r--r--fs/kernfs/inode.c435
-rw-r--r--fs/kernfs/kernfs-internal.h127
-rw-r--r--fs/kernfs/mount.c397
-rw-r--r--fs/kernfs/symlink.c153
8 files changed, 3862 insertions, 0 deletions
diff --git a/fs/kernfs/Kconfig b/fs/kernfs/Kconfig
new file mode 100644
index 000000000..e7f09105f
--- /dev/null
+++ b/fs/kernfs/Kconfig
@@ -0,0 +1,8 @@
1# SPDX-License-Identifier: GPL-2.0-only
2#
3# KERNFS should be selected by its users
4#
5
6config KERNFS
7 bool
8 default n
diff --git a/fs/kernfs/Makefile b/fs/kernfs/Makefile
new file mode 100644
index 000000000..4ca54ff54
--- /dev/null
+++ b/fs/kernfs/Makefile
@@ -0,0 +1,6 @@
1# SPDX-License-Identifier: GPL-2.0-only
2#
3# Makefile for the kernfs pseudo filesystem
4#
5
6obj-y := mount.o inode.o dir.o file.o symlink.o
diff --git a/fs/kernfs/dir.c b/fs/kernfs/dir.c
new file mode 100644
index 000000000..8b3c86a50
--- /dev/null
+++ b/fs/kernfs/dir.c
@@ -0,0 +1,1716 @@
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/sched.h>
11#include <linux/fs.h>
12#include <linux/namei.h>
13#include <linux/idr.h>
14#include <linux/slab.h>
15#include <linux/security.h>
16#include <linux/hash.h>
17
18#include "kernfs-internal.h"
19
20DEFINE_MUTEX(kernfs_mutex);
21static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22/*
23 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
24 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
25 * will perform wakeups when releasing console_sem. Holding rename_lock
26 * will introduce deadlock if the scheduler reads the kernfs_name in the
27 * wakeup path.
28 */
29static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
30static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
31static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
32
33#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
34
35static bool kernfs_active(struct kernfs_node *kn)
36{
37 lockdep_assert_held(&kernfs_mutex);
38 return atomic_read(&kn->active) >= 0;
39}
40
41static bool kernfs_lockdep(struct kernfs_node *kn)
42{
43#ifdef CONFIG_DEBUG_LOCK_ALLOC
44 return kn->flags & KERNFS_LOCKDEP;
45#else
46 return false;
47#endif
48}
49
50static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
51{
52 if (!kn)
53 return strlcpy(buf, "(null)", buflen);
54
55 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
56}
57
58/* kernfs_node_depth - compute depth from @from to @to */
59static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
60{
61 size_t depth = 0;
62
63 while (to->parent && to != from) {
64 depth++;
65 to = to->parent;
66 }
67 return depth;
68}
69
70static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
71 struct kernfs_node *b)
72{
73 size_t da, db;
74 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
75
76 if (ra != rb)
77 return NULL;
78
79 da = kernfs_depth(ra->kn, a);
80 db = kernfs_depth(rb->kn, b);
81
82 while (da > db) {
83 a = a->parent;
84 da--;
85 }
86 while (db > da) {
87 b = b->parent;
88 db--;
89 }
90
91 /* worst case b and a will be the same at root */
92 while (b != a) {
93 b = b->parent;
94 a = a->parent;
95 }
96
97 return a;
98}
99
100/**
101 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
102 * where kn_from is treated as root of the path.
103 * @kn_from: kernfs node which should be treated as root for the path
104 * @kn_to: kernfs node to which path is needed
105 * @buf: buffer to copy the path into
106 * @buflen: size of @buf
107 *
108 * We need to handle couple of scenarios here:
109 * [1] when @kn_from is an ancestor of @kn_to at some level
110 * kn_from: /n1/n2/n3
111 * kn_to: /n1/n2/n3/n4/n5
112 * result: /n4/n5
113 *
114 * [2] when @kn_from is on a different hierarchy and we need to find common
115 * ancestor between @kn_from and @kn_to.
116 * kn_from: /n1/n2/n3/n4
117 * kn_to: /n1/n2/n5
118 * result: /../../n5
119 * OR
120 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
121 * kn_to: /n1/n2/n3 [depth=3]
122 * result: /../..
123 *
124 * [3] when @kn_to is NULL result will be "(null)"
125 *
126 * Returns the length of the full path. If the full length is equal to or
127 * greater than @buflen, @buf contains the truncated path with the trailing
128 * '\0'. On error, -errno is returned.
129 */
130static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
131 struct kernfs_node *kn_from,
132 char *buf, size_t buflen)
133{
134 struct kernfs_node *kn, *common;
135 const char parent_str[] = "/..";
136 size_t depth_from, depth_to, len = 0;
137 int i, j;
138
139 if (!kn_to)
140 return strlcpy(buf, "(null)", buflen);
141
142 if (!kn_from)
143 kn_from = kernfs_root(kn_to)->kn;
144
145 if (kn_from == kn_to)
146 return strlcpy(buf, "/", buflen);
147
148 if (!buf)
149 return -EINVAL;
150
151 common = kernfs_common_ancestor(kn_from, kn_to);
152 if (WARN_ON(!common))
153 return -EINVAL;
154
155 depth_to = kernfs_depth(common, kn_to);
156 depth_from = kernfs_depth(common, kn_from);
157
158 buf[0] = '\0';
159
160 for (i = 0; i < depth_from; i++)
161 len += strlcpy(buf + len, parent_str,
162 len < buflen ? buflen - len : 0);
163
164 /* Calculate how many bytes we need for the rest */
165 for (i = depth_to - 1; i >= 0; i--) {
166 for (kn = kn_to, j = 0; j < i; j++)
167 kn = kn->parent;
168 len += strlcpy(buf + len, "/",
169 len < buflen ? buflen - len : 0);
170 len += strlcpy(buf + len, kn->name,
171 len < buflen ? buflen - len : 0);
172 }
173
174 return len;
175}
176
177/**
178 * kernfs_name - obtain the name of a given node
179 * @kn: kernfs_node of interest
180 * @buf: buffer to copy @kn's name into
181 * @buflen: size of @buf
182 *
183 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
184 * similar to strlcpy(). It returns the length of @kn's name and if @buf
185 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
186 *
187 * Fills buffer with "(null)" if @kn is NULL.
188 *
189 * This function can be called from any context.
190 */
191int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
192{
193 unsigned long flags;
194 int ret;
195
196 spin_lock_irqsave(&kernfs_rename_lock, flags);
197 ret = kernfs_name_locked(kn, buf, buflen);
198 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
199 return ret;
200}
201
202/**
203 * kernfs_path_from_node - build path of node @to relative to @from.
204 * @from: parent kernfs_node relative to which we need to build the path
205 * @to: kernfs_node of interest
206 * @buf: buffer to copy @to's path into
207 * @buflen: size of @buf
208 *
209 * Builds @to's path relative to @from in @buf. @from and @to must
210 * be on the same kernfs-root. If @from is not parent of @to, then a relative
211 * path (which includes '..'s) as needed to reach from @from to @to is
212 * returned.
213 *
214 * Returns the length of the full path. If the full length is equal to or
215 * greater than @buflen, @buf contains the truncated path with the trailing
216 * '\0'. On error, -errno is returned.
217 */
218int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
219 char *buf, size_t buflen)
220{
221 unsigned long flags;
222 int ret;
223
224 spin_lock_irqsave(&kernfs_rename_lock, flags);
225 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
226 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
227 return ret;
228}
229EXPORT_SYMBOL_GPL(kernfs_path_from_node);
230
231/**
232 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
233 * @kn: kernfs_node of interest
234 *
235 * This function can be called from any context.
236 */
237void pr_cont_kernfs_name(struct kernfs_node *kn)
238{
239 unsigned long flags;
240
241 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
242
243 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
244 pr_cont("%s", kernfs_pr_cont_buf);
245
246 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
247}
248
249/**
250 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
251 * @kn: kernfs_node of interest
252 *
253 * This function can be called from any context.
254 */
255void pr_cont_kernfs_path(struct kernfs_node *kn)
256{
257 unsigned long flags;
258 int sz;
259
260 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
261
262 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
263 sizeof(kernfs_pr_cont_buf));
264 if (sz < 0) {
265 pr_cont("(error)");
266 goto out;
267 }
268
269 if (sz >= sizeof(kernfs_pr_cont_buf)) {
270 pr_cont("(name too long)");
271 goto out;
272 }
273
274 pr_cont("%s", kernfs_pr_cont_buf);
275
276out:
277 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
278}
279
280/**
281 * kernfs_get_parent - determine the parent node and pin it
282 * @kn: kernfs_node of interest
283 *
284 * Determines @kn's parent, pins and returns it. This function can be
285 * called from any context.
286 */
287struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
288{
289 struct kernfs_node *parent;
290 unsigned long flags;
291
292 spin_lock_irqsave(&kernfs_rename_lock, flags);
293 parent = kn->parent;
294 kernfs_get(parent);
295 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
296
297 return parent;
298}
299
300/**
301 * kernfs_name_hash
302 * @name: Null terminated string to hash
303 * @ns: Namespace tag to hash
304 *
305 * Returns 31 bit hash of ns + name (so it fits in an off_t )
306 */
307static unsigned int kernfs_name_hash(const char *name, const void *ns)
308{
309 unsigned long hash = init_name_hash(ns);
310 unsigned int len = strlen(name);
311 while (len--)
312 hash = partial_name_hash(*name++, hash);
313 hash = end_name_hash(hash);
314 hash &= 0x7fffffffU;
315 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
316 if (hash < 2)
317 hash += 2;
318 if (hash >= INT_MAX)
319 hash = INT_MAX - 1;
320 return hash;
321}
322
323static int kernfs_name_compare(unsigned int hash, const char *name,
324 const void *ns, const struct kernfs_node *kn)
325{
326 if (hash < kn->hash)
327 return -1;
328 if (hash > kn->hash)
329 return 1;
330 if (ns < kn->ns)
331 return -1;
332 if (ns > kn->ns)
333 return 1;
334 return strcmp(name, kn->name);
335}
336
337static int kernfs_sd_compare(const struct kernfs_node *left,
338 const struct kernfs_node *right)
339{
340 return kernfs_name_compare(left->hash, left->name, left->ns, right);
341}
342
343/**
344 * kernfs_link_sibling - link kernfs_node into sibling rbtree
345 * @kn: kernfs_node of interest
346 *
347 * Link @kn into its sibling rbtree which starts from
348 * @kn->parent->dir.children.
349 *
350 * Locking:
351 * mutex_lock(kernfs_mutex)
352 *
353 * RETURNS:
354 * 0 on susccess -EEXIST on failure.
355 */
356static int kernfs_link_sibling(struct kernfs_node *kn)
357{
358 struct rb_node **node = &kn->parent->dir.children.rb_node;
359 struct rb_node *parent = NULL;
360
361 while (*node) {
362 struct kernfs_node *pos;
363 int result;
364
365 pos = rb_to_kn(*node);
366 parent = *node;
367 result = kernfs_sd_compare(kn, pos);
368 if (result < 0)
369 node = &pos->rb.rb_left;
370 else if (result > 0)
371 node = &pos->rb.rb_right;
372 else
373 return -EEXIST;
374 }
375
376 /* add new node and rebalance the tree */
377 rb_link_node(&kn->rb, parent, node);
378 rb_insert_color(&kn->rb, &kn->parent->dir.children);
379
380 /* successfully added, account subdir number */
381 if (kernfs_type(kn) == KERNFS_DIR)
382 kn->parent->dir.subdirs++;
383
384 return 0;
385}
386
387/**
388 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
389 * @kn: kernfs_node of interest
390 *
391 * Try to unlink @kn from its sibling rbtree which starts from
392 * kn->parent->dir.children. Returns %true if @kn was actually
393 * removed, %false if @kn wasn't on the rbtree.
394 *
395 * Locking:
396 * mutex_lock(kernfs_mutex)
397 */
398static bool kernfs_unlink_sibling(struct kernfs_node *kn)
399{
400 if (RB_EMPTY_NODE(&kn->rb))
401 return false;
402
403 if (kernfs_type(kn) == KERNFS_DIR)
404 kn->parent->dir.subdirs--;
405
406 rb_erase(&kn->rb, &kn->parent->dir.children);
407 RB_CLEAR_NODE(&kn->rb);
408 return true;
409}
410
411/**
412 * kernfs_get_active - get an active reference to kernfs_node
413 * @kn: kernfs_node to get an active reference to
414 *
415 * Get an active reference of @kn. This function is noop if @kn
416 * is NULL.
417 *
418 * RETURNS:
419 * Pointer to @kn on success, NULL on failure.
420 */
421struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
422{
423 if (unlikely(!kn))
424 return NULL;
425
426 if (!atomic_inc_unless_negative(&kn->active))
427 return NULL;
428
429 if (kernfs_lockdep(kn))
430 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
431 return kn;
432}
433
434/**
435 * kernfs_put_active - put an active reference to kernfs_node
436 * @kn: kernfs_node to put an active reference to
437 *
438 * Put an active reference to @kn. This function is noop if @kn
439 * is NULL.
440 */
441void kernfs_put_active(struct kernfs_node *kn)
442{
443 int v;
444
445 if (unlikely(!kn))
446 return;
447
448 if (kernfs_lockdep(kn))
449 rwsem_release(&kn->dep_map, _RET_IP_);
450 v = atomic_dec_return(&kn->active);
451 if (likely(v != KN_DEACTIVATED_BIAS))
452 return;
453
454 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
455}
456
457/**
458 * kernfs_drain - drain kernfs_node
459 * @kn: kernfs_node to drain
460 *
461 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
462 * removers may invoke this function concurrently on @kn and all will
463 * return after draining is complete.
464 */
465static void kernfs_drain(struct kernfs_node *kn)
466 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
467{
468 struct kernfs_root *root = kernfs_root(kn);
469
470 lockdep_assert_held(&kernfs_mutex);
471 WARN_ON_ONCE(kernfs_active(kn));
472
473 mutex_unlock(&kernfs_mutex);
474
475 if (kernfs_lockdep(kn)) {
476 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
477 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
478 lock_contended(&kn->dep_map, _RET_IP_);
479 }
480
481 /* but everyone should wait for draining */
482 wait_event(root->deactivate_waitq,
483 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
484
485 if (kernfs_lockdep(kn)) {
486 lock_acquired(&kn->dep_map, _RET_IP_);
487 rwsem_release(&kn->dep_map, _RET_IP_);
488 }
489
490 kernfs_drain_open_files(kn);
491
492 mutex_lock(&kernfs_mutex);
493}
494
495/**
496 * kernfs_get - get a reference count on a kernfs_node
497 * @kn: the target kernfs_node
498 */
499void kernfs_get(struct kernfs_node *kn)
500{
501 if (kn) {
502 WARN_ON(!atomic_read(&kn->count));
503 atomic_inc(&kn->count);
504 }
505}
506EXPORT_SYMBOL_GPL(kernfs_get);
507
508/**
509 * kernfs_put - put a reference count on a kernfs_node
510 * @kn: the target kernfs_node
511 *
512 * Put a reference count of @kn and destroy it if it reached zero.
513 */
514void kernfs_put(struct kernfs_node *kn)
515{
516 struct kernfs_node *parent;
517 struct kernfs_root *root;
518
519 if (!kn || !atomic_dec_and_test(&kn->count))
520 return;
521 root = kernfs_root(kn);
522 repeat:
523 /*
524 * Moving/renaming is always done while holding reference.
525 * kn->parent won't change beneath us.
526 */
527 parent = kn->parent;
528
529 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
530 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
531 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
532
533 if (kernfs_type(kn) == KERNFS_LINK)
534 kernfs_put(kn->symlink.target_kn);
535
536 kfree_const(kn->name);
537
538 if (kn->iattr) {
539 simple_xattrs_free(&kn->iattr->xattrs);
540 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
541 }
542 spin_lock(&kernfs_idr_lock);
543 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
544 spin_unlock(&kernfs_idr_lock);
545 kmem_cache_free(kernfs_node_cache, kn);
546
547 kn = parent;
548 if (kn) {
549 if (atomic_dec_and_test(&kn->count))
550 goto repeat;
551 } else {
552 /* just released the root kn, free @root too */
553 idr_destroy(&root->ino_idr);
554 kfree(root);
555 }
556}
557EXPORT_SYMBOL_GPL(kernfs_put);
558
559static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
560{
561 struct kernfs_node *kn;
562
563 if (flags & LOOKUP_RCU)
564 return -ECHILD;
565
566 /* Always perform fresh lookup for negatives */
567 if (d_really_is_negative(dentry))
568 goto out_bad_unlocked;
569
570 kn = kernfs_dentry_node(dentry);
571 mutex_lock(&kernfs_mutex);
572
573 /* The kernfs node has been deactivated */
574 if (!kernfs_active(kn))
575 goto out_bad;
576
577 /* The kernfs node has been moved? */
578 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
579 goto out_bad;
580
581 /* The kernfs node has been renamed */
582 if (strcmp(dentry->d_name.name, kn->name) != 0)
583 goto out_bad;
584
585 /* The kernfs node has been moved to a different namespace */
586 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
587 kernfs_info(dentry->d_sb)->ns != kn->ns)
588 goto out_bad;
589
590 mutex_unlock(&kernfs_mutex);
591 return 1;
592out_bad:
593 mutex_unlock(&kernfs_mutex);
594out_bad_unlocked:
595 return 0;
596}
597
598const struct dentry_operations kernfs_dops = {
599 .d_revalidate = kernfs_dop_revalidate,
600};
601
602/**
603 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
604 * @dentry: the dentry in question
605 *
606 * Return the kernfs_node associated with @dentry. If @dentry is not a
607 * kernfs one, %NULL is returned.
608 *
609 * While the returned kernfs_node will stay accessible as long as @dentry
610 * is accessible, the returned node can be in any state and the caller is
611 * fully responsible for determining what's accessible.
612 */
613struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
614{
615 if (dentry->d_sb->s_op == &kernfs_sops &&
616 !d_really_is_negative(dentry))
617 return kernfs_dentry_node(dentry);
618 return NULL;
619}
620
621static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
622 struct kernfs_node *parent,
623 const char *name, umode_t mode,
624 kuid_t uid, kgid_t gid,
625 unsigned flags)
626{
627 struct kernfs_node *kn;
628 u32 id_highbits;
629 int ret;
630
631 name = kstrdup_const(name, GFP_KERNEL);
632 if (!name)
633 return NULL;
634
635 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
636 if (!kn)
637 goto err_out1;
638
639 idr_preload(GFP_KERNEL);
640 spin_lock(&kernfs_idr_lock);
641 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
642 if (ret >= 0 && ret < root->last_id_lowbits)
643 root->id_highbits++;
644 id_highbits = root->id_highbits;
645 root->last_id_lowbits = ret;
646 spin_unlock(&kernfs_idr_lock);
647 idr_preload_end();
648 if (ret < 0)
649 goto err_out2;
650
651 kn->id = (u64)id_highbits << 32 | ret;
652
653 atomic_set(&kn->count, 1);
654 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
655 RB_CLEAR_NODE(&kn->rb);
656
657 kn->name = name;
658 kn->mode = mode;
659 kn->flags = flags;
660
661 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
662 struct iattr iattr = {
663 .ia_valid = ATTR_UID | ATTR_GID,
664 .ia_uid = uid,
665 .ia_gid = gid,
666 };
667
668 ret = __kernfs_setattr(kn, &iattr);
669 if (ret < 0)
670 goto err_out3;
671 }
672
673 if (parent) {
674 ret = security_kernfs_init_security(parent, kn);
675 if (ret)
676 goto err_out3;
677 }
678
679 return kn;
680
681 err_out3:
682 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
683 err_out2:
684 kmem_cache_free(kernfs_node_cache, kn);
685 err_out1:
686 kfree_const(name);
687 return NULL;
688}
689
690struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
691 const char *name, umode_t mode,
692 kuid_t uid, kgid_t gid,
693 unsigned flags)
694{
695 struct kernfs_node *kn;
696
697 kn = __kernfs_new_node(kernfs_root(parent), parent,
698 name, mode, uid, gid, flags);
699 if (kn) {
700 kernfs_get(parent);
701 kn->parent = parent;
702 }
703 return kn;
704}
705
706/*
707 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
708 * @root: the kernfs root
709 * @id: the target node id
710 *
711 * @id's lower 32bits encode ino and upper gen. If the gen portion is
712 * zero, all generations are matched.
713 *
714 * RETURNS:
715 * NULL on failure. Return a kernfs node with reference counter incremented
716 */
717struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
718 u64 id)
719{
720 struct kernfs_node *kn;
721 ino_t ino = kernfs_id_ino(id);
722 u32 gen = kernfs_id_gen(id);
723
724 spin_lock(&kernfs_idr_lock);
725
726 kn = idr_find(&root->ino_idr, (u32)ino);
727 if (!kn)
728 goto err_unlock;
729
730 if (sizeof(ino_t) >= sizeof(u64)) {
731 /* we looked up with the low 32bits, compare the whole */
732 if (kernfs_ino(kn) != ino)
733 goto err_unlock;
734 } else {
735 /* 0 matches all generations */
736 if (unlikely(gen && kernfs_gen(kn) != gen))
737 goto err_unlock;
738 }
739
740 /*
741 * ACTIVATED is protected with kernfs_mutex but it was clear when
742 * @kn was added to idr and we just wanna see it set. No need to
743 * grab kernfs_mutex.
744 */
745 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
746 !atomic_inc_not_zero(&kn->count)))
747 goto err_unlock;
748
749 spin_unlock(&kernfs_idr_lock);
750 return kn;
751err_unlock:
752 spin_unlock(&kernfs_idr_lock);
753 return NULL;
754}
755
756/**
757 * kernfs_add_one - add kernfs_node to parent without warning
758 * @kn: kernfs_node to be added
759 *
760 * The caller must already have initialized @kn->parent. This
761 * function increments nlink of the parent's inode if @kn is a
762 * directory and link into the children list of the parent.
763 *
764 * RETURNS:
765 * 0 on success, -EEXIST if entry with the given name already
766 * exists.
767 */
768int kernfs_add_one(struct kernfs_node *kn)
769{
770 struct kernfs_node *parent = kn->parent;
771 struct kernfs_iattrs *ps_iattr;
772 bool has_ns;
773 int ret;
774
775 mutex_lock(&kernfs_mutex);
776
777 ret = -EINVAL;
778 has_ns = kernfs_ns_enabled(parent);
779 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
780 has_ns ? "required" : "invalid", parent->name, kn->name))
781 goto out_unlock;
782
783 if (kernfs_type(parent) != KERNFS_DIR)
784 goto out_unlock;
785
786 ret = -ENOENT;
787 if (parent->flags & KERNFS_EMPTY_DIR)
788 goto out_unlock;
789
790 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
791 goto out_unlock;
792
793 kn->hash = kernfs_name_hash(kn->name, kn->ns);
794
795 ret = kernfs_link_sibling(kn);
796 if (ret)
797 goto out_unlock;
798
799 /* Update timestamps on the parent */
800 ps_iattr = parent->iattr;
801 if (ps_iattr) {
802 ktime_get_real_ts64(&ps_iattr->ia_ctime);
803 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
804 }
805
806 mutex_unlock(&kernfs_mutex);
807
808 /*
809 * Activate the new node unless CREATE_DEACTIVATED is requested.
810 * If not activated here, the kernfs user is responsible for
811 * activating the node with kernfs_activate(). A node which hasn't
812 * been activated is not visible to userland and its removal won't
813 * trigger deactivation.
814 */
815 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
816 kernfs_activate(kn);
817 return 0;
818
819out_unlock:
820 mutex_unlock(&kernfs_mutex);
821 return ret;
822}
823
824/**
825 * kernfs_find_ns - find kernfs_node with the given name
826 * @parent: kernfs_node to search under
827 * @name: name to look for
828 * @ns: the namespace tag to use
829 *
830 * Look for kernfs_node with name @name under @parent. Returns pointer to
831 * the found kernfs_node on success, %NULL on failure.
832 */
833static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
834 const unsigned char *name,
835 const void *ns)
836{
837 struct rb_node *node = parent->dir.children.rb_node;
838 bool has_ns = kernfs_ns_enabled(parent);
839 unsigned int hash;
840
841 lockdep_assert_held(&kernfs_mutex);
842
843 if (has_ns != (bool)ns) {
844 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
845 has_ns ? "required" : "invalid", parent->name, name);
846 return NULL;
847 }
848
849 hash = kernfs_name_hash(name, ns);
850 while (node) {
851 struct kernfs_node *kn;
852 int result;
853
854 kn = rb_to_kn(node);
855 result = kernfs_name_compare(hash, name, ns, kn);
856 if (result < 0)
857 node = node->rb_left;
858 else if (result > 0)
859 node = node->rb_right;
860 else
861 return kn;
862 }
863 return NULL;
864}
865
866static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
867 const unsigned char *path,
868 const void *ns)
869{
870 size_t len;
871 char *p, *name;
872
873 lockdep_assert_held(&kernfs_mutex);
874
875 spin_lock_irq(&kernfs_pr_cont_lock);
876
877 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
878
879 if (len >= sizeof(kernfs_pr_cont_buf)) {
880 spin_unlock_irq(&kernfs_pr_cont_lock);
881 return NULL;
882 }
883
884 p = kernfs_pr_cont_buf;
885
886 while ((name = strsep(&p, "/")) && parent) {
887 if (*name == '\0')
888 continue;
889 parent = kernfs_find_ns(parent, name, ns);
890 }
891
892 spin_unlock_irq(&kernfs_pr_cont_lock);
893
894 return parent;
895}
896
897/**
898 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
899 * @parent: kernfs_node to search under
900 * @name: name to look for
901 * @ns: the namespace tag to use
902 *
903 * Look for kernfs_node with name @name under @parent and get a reference
904 * if found. This function may sleep and returns pointer to the found
905 * kernfs_node on success, %NULL on failure.
906 */
907struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
908 const char *name, const void *ns)
909{
910 struct kernfs_node *kn;
911
912 mutex_lock(&kernfs_mutex);
913 kn = kernfs_find_ns(parent, name, ns);
914 kernfs_get(kn);
915 mutex_unlock(&kernfs_mutex);
916
917 return kn;
918}
919EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
920
921/**
922 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
923 * @parent: kernfs_node to search under
924 * @path: path to look for
925 * @ns: the namespace tag to use
926 *
927 * Look for kernfs_node with path @path under @parent and get a reference
928 * if found. This function may sleep and returns pointer to the found
929 * kernfs_node on success, %NULL on failure.
930 */
931struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
932 const char *path, const void *ns)
933{
934 struct kernfs_node *kn;
935
936 mutex_lock(&kernfs_mutex);
937 kn = kernfs_walk_ns(parent, path, ns);
938 kernfs_get(kn);
939 mutex_unlock(&kernfs_mutex);
940
941 return kn;
942}
943
944/**
945 * kernfs_create_root - create a new kernfs hierarchy
946 * @scops: optional syscall operations for the hierarchy
947 * @flags: KERNFS_ROOT_* flags
948 * @priv: opaque data associated with the new directory
949 *
950 * Returns the root of the new hierarchy on success, ERR_PTR() value on
951 * failure.
952 */
953struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
954 unsigned int flags, void *priv)
955{
956 struct kernfs_root *root;
957 struct kernfs_node *kn;
958
959 root = kzalloc(sizeof(*root), GFP_KERNEL);
960 if (!root)
961 return ERR_PTR(-ENOMEM);
962
963 idr_init(&root->ino_idr);
964 INIT_LIST_HEAD(&root->supers);
965
966 /*
967 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
968 * High bits generation. The starting value for both ino and
969 * genenration is 1. Initialize upper 32bit allocation
970 * accordingly.
971 */
972 if (sizeof(ino_t) >= sizeof(u64))
973 root->id_highbits = 0;
974 else
975 root->id_highbits = 1;
976
977 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
978 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
979 KERNFS_DIR);
980 if (!kn) {
981 idr_destroy(&root->ino_idr);
982 kfree(root);
983 return ERR_PTR(-ENOMEM);
984 }
985
986 kn->priv = priv;
987 kn->dir.root = root;
988
989 root->syscall_ops = scops;
990 root->flags = flags;
991 root->kn = kn;
992 init_waitqueue_head(&root->deactivate_waitq);
993
994 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
995 kernfs_activate(kn);
996
997 return root;
998}
999
1000/**
1001 * kernfs_destroy_root - destroy a kernfs hierarchy
1002 * @root: root of the hierarchy to destroy
1003 *
1004 * Destroy the hierarchy anchored at @root by removing all existing
1005 * directories and destroying @root.
1006 */
1007void kernfs_destroy_root(struct kernfs_root *root)
1008{
1009 kernfs_remove(root->kn); /* will also free @root */
1010}
1011
1012/**
1013 * kernfs_create_dir_ns - create a directory
1014 * @parent: parent in which to create a new directory
1015 * @name: name of the new directory
1016 * @mode: mode of the new directory
1017 * @uid: uid of the new directory
1018 * @gid: gid of the new directory
1019 * @priv: opaque data associated with the new directory
1020 * @ns: optional namespace tag of the directory
1021 *
1022 * Returns the created node on success, ERR_PTR() value on failure.
1023 */
1024struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1025 const char *name, umode_t mode,
1026 kuid_t uid, kgid_t gid,
1027 void *priv, const void *ns)
1028{
1029 struct kernfs_node *kn;
1030 int rc;
1031
1032 /* allocate */
1033 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1034 uid, gid, KERNFS_DIR);
1035 if (!kn)
1036 return ERR_PTR(-ENOMEM);
1037
1038 kn->dir.root = parent->dir.root;
1039 kn->ns = ns;
1040 kn->priv = priv;
1041
1042 /* link in */
1043 rc = kernfs_add_one(kn);
1044 if (!rc)
1045 return kn;
1046
1047 kernfs_put(kn);
1048 return ERR_PTR(rc);
1049}
1050
1051/**
1052 * kernfs_create_empty_dir - create an always empty directory
1053 * @parent: parent in which to create a new directory
1054 * @name: name of the new directory
1055 *
1056 * Returns the created node on success, ERR_PTR() value on failure.
1057 */
1058struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1059 const char *name)
1060{
1061 struct kernfs_node *kn;
1062 int rc;
1063
1064 /* allocate */
1065 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1066 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1067 if (!kn)
1068 return ERR_PTR(-ENOMEM);
1069
1070 kn->flags |= KERNFS_EMPTY_DIR;
1071 kn->dir.root = parent->dir.root;
1072 kn->ns = NULL;
1073 kn->priv = NULL;
1074
1075 /* link in */
1076 rc = kernfs_add_one(kn);
1077 if (!rc)
1078 return kn;
1079
1080 kernfs_put(kn);
1081 return ERR_PTR(rc);
1082}
1083
1084static struct dentry *kernfs_iop_lookup(struct inode *dir,
1085 struct dentry *dentry,
1086 unsigned int flags)
1087{
1088 struct dentry *ret;
1089 struct kernfs_node *parent = dir->i_private;
1090 struct kernfs_node *kn;
1091 struct inode *inode;
1092 const void *ns = NULL;
1093
1094 mutex_lock(&kernfs_mutex);
1095
1096 if (kernfs_ns_enabled(parent))
1097 ns = kernfs_info(dir->i_sb)->ns;
1098
1099 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1100
1101 /* no such entry */
1102 if (!kn || !kernfs_active(kn)) {
1103 ret = NULL;
1104 goto out_unlock;
1105 }
1106
1107 /* attach dentry and inode */
1108 inode = kernfs_get_inode(dir->i_sb, kn);
1109 if (!inode) {
1110 ret = ERR_PTR(-ENOMEM);
1111 goto out_unlock;
1112 }
1113
1114 /* instantiate and hash dentry */
1115 ret = d_splice_alias(inode, dentry);
1116 out_unlock:
1117 mutex_unlock(&kernfs_mutex);
1118 return ret;
1119}
1120
1121static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1122 umode_t mode)
1123{
1124 struct kernfs_node *parent = dir->i_private;
1125 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1126 int ret;
1127
1128 if (!scops || !scops->mkdir)
1129 return -EPERM;
1130
1131 if (!kernfs_get_active(parent))
1132 return -ENODEV;
1133
1134 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1135
1136 kernfs_put_active(parent);
1137 return ret;
1138}
1139
1140static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1141{
1142 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1143 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1144 int ret;
1145
1146 if (!scops || !scops->rmdir)
1147 return -EPERM;
1148
1149 if (!kernfs_get_active(kn))
1150 return -ENODEV;
1151
1152 ret = scops->rmdir(kn);
1153
1154 kernfs_put_active(kn);
1155 return ret;
1156}
1157
1158static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1159 struct inode *new_dir, struct dentry *new_dentry,
1160 unsigned int flags)
1161{
1162 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1163 struct kernfs_node *new_parent = new_dir->i_private;
1164 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1165 int ret;
1166
1167 if (flags)
1168 return -EINVAL;
1169
1170 if (!scops || !scops->rename)
1171 return -EPERM;
1172
1173 if (!kernfs_get_active(kn))
1174 return -ENODEV;
1175
1176 if (!kernfs_get_active(new_parent)) {
1177 kernfs_put_active(kn);
1178 return -ENODEV;
1179 }
1180
1181 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1182
1183 kernfs_put_active(new_parent);
1184 kernfs_put_active(kn);
1185 return ret;
1186}
1187
1188const struct inode_operations kernfs_dir_iops = {
1189 .lookup = kernfs_iop_lookup,
1190 .permission = kernfs_iop_permission,
1191 .setattr = kernfs_iop_setattr,
1192 .getattr = kernfs_iop_getattr,
1193 .listxattr = kernfs_iop_listxattr,
1194
1195 .mkdir = kernfs_iop_mkdir,
1196 .rmdir = kernfs_iop_rmdir,
1197 .rename = kernfs_iop_rename,
1198};
1199
1200static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1201{
1202 struct kernfs_node *last;
1203
1204 while (true) {
1205 struct rb_node *rbn;
1206
1207 last = pos;
1208
1209 if (kernfs_type(pos) != KERNFS_DIR)
1210 break;
1211
1212 rbn = rb_first(&pos->dir.children);
1213 if (!rbn)
1214 break;
1215
1216 pos = rb_to_kn(rbn);
1217 }
1218
1219 return last;
1220}
1221
1222/**
1223 * kernfs_next_descendant_post - find the next descendant for post-order walk
1224 * @pos: the current position (%NULL to initiate traversal)
1225 * @root: kernfs_node whose descendants to walk
1226 *
1227 * Find the next descendant to visit for post-order traversal of @root's
1228 * descendants. @root is included in the iteration and the last node to be
1229 * visited.
1230 */
1231static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1232 struct kernfs_node *root)
1233{
1234 struct rb_node *rbn;
1235
1236 lockdep_assert_held(&kernfs_mutex);
1237
1238 /* if first iteration, visit leftmost descendant which may be root */
1239 if (!pos)
1240 return kernfs_leftmost_descendant(root);
1241
1242 /* if we visited @root, we're done */
1243 if (pos == root)
1244 return NULL;
1245
1246 /* if there's an unvisited sibling, visit its leftmost descendant */
1247 rbn = rb_next(&pos->rb);
1248 if (rbn)
1249 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1250
1251 /* no sibling left, visit parent */
1252 return pos->parent;
1253}
1254
1255/**
1256 * kernfs_activate - activate a node which started deactivated
1257 * @kn: kernfs_node whose subtree is to be activated
1258 *
1259 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1260 * needs to be explicitly activated. A node which hasn't been activated
1261 * isn't visible to userland and deactivation is skipped during its
1262 * removal. This is useful to construct atomic init sequences where
1263 * creation of multiple nodes should either succeed or fail atomically.
1264 *
1265 * The caller is responsible for ensuring that this function is not called
1266 * after kernfs_remove*() is invoked on @kn.
1267 */
1268void kernfs_activate(struct kernfs_node *kn)
1269{
1270 struct kernfs_node *pos;
1271
1272 mutex_lock(&kernfs_mutex);
1273
1274 pos = NULL;
1275 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1276 if (pos->flags & KERNFS_ACTIVATED)
1277 continue;
1278
1279 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1280 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1281
1282 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1283 pos->flags |= KERNFS_ACTIVATED;
1284 }
1285
1286 mutex_unlock(&kernfs_mutex);
1287}
1288
1289static void __kernfs_remove(struct kernfs_node *kn)
1290{
1291 struct kernfs_node *pos;
1292
1293 lockdep_assert_held(&kernfs_mutex);
1294
1295 /*
1296 * Short-circuit if non-root @kn has already finished removal.
1297 * This is for kernfs_remove_self() which plays with active ref
1298 * after removal.
1299 */
1300 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1301 return;
1302
1303 pr_debug("kernfs %s: removing\n", kn->name);
1304
1305 /* prevent any new usage under @kn by deactivating all nodes */
1306 pos = NULL;
1307 while ((pos = kernfs_next_descendant_post(pos, kn)))
1308 if (kernfs_active(pos))
1309 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1310
1311 /* deactivate and unlink the subtree node-by-node */
1312 do {
1313 pos = kernfs_leftmost_descendant(kn);
1314
1315 /*
1316 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1317 * base ref could have been put by someone else by the time
1318 * the function returns. Make sure it doesn't go away
1319 * underneath us.
1320 */
1321 kernfs_get(pos);
1322
1323 /*
1324 * Drain iff @kn was activated. This avoids draining and
1325 * its lockdep annotations for nodes which have never been
1326 * activated and allows embedding kernfs_remove() in create
1327 * error paths without worrying about draining.
1328 */
1329 if (kn->flags & KERNFS_ACTIVATED)
1330 kernfs_drain(pos);
1331 else
1332 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1333
1334 /*
1335 * kernfs_unlink_sibling() succeeds once per node. Use it
1336 * to decide who's responsible for cleanups.
1337 */
1338 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1339 struct kernfs_iattrs *ps_iattr =
1340 pos->parent ? pos->parent->iattr : NULL;
1341
1342 /* update timestamps on the parent */
1343 if (ps_iattr) {
1344 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1345 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1346 }
1347
1348 kernfs_put(pos);
1349 }
1350
1351 kernfs_put(pos);
1352 } while (pos != kn);
1353}
1354
1355/**
1356 * kernfs_remove - remove a kernfs_node recursively
1357 * @kn: the kernfs_node to remove
1358 *
1359 * Remove @kn along with all its subdirectories and files.
1360 */
1361void kernfs_remove(struct kernfs_node *kn)
1362{
1363 mutex_lock(&kernfs_mutex);
1364 __kernfs_remove(kn);
1365 mutex_unlock(&kernfs_mutex);
1366}
1367
1368/**
1369 * kernfs_break_active_protection - break out of active protection
1370 * @kn: the self kernfs_node
1371 *
1372 * The caller must be running off of a kernfs operation which is invoked
1373 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1374 * this function must also be matched with an invocation of
1375 * kernfs_unbreak_active_protection().
1376 *
1377 * This function releases the active reference of @kn the caller is
1378 * holding. Once this function is called, @kn may be removed at any point
1379 * and the caller is solely responsible for ensuring that the objects it
1380 * dereferences are accessible.
1381 */
1382void kernfs_break_active_protection(struct kernfs_node *kn)
1383{
1384 /*
1385 * Take out ourself out of the active ref dependency chain. If
1386 * we're called without an active ref, lockdep will complain.
1387 */
1388 kernfs_put_active(kn);
1389}
1390
1391/**
1392 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1393 * @kn: the self kernfs_node
1394 *
1395 * If kernfs_break_active_protection() was called, this function must be
1396 * invoked before finishing the kernfs operation. Note that while this
1397 * function restores the active reference, it doesn't and can't actually
1398 * restore the active protection - @kn may already or be in the process of
1399 * being removed. Once kernfs_break_active_protection() is invoked, that
1400 * protection is irreversibly gone for the kernfs operation instance.
1401 *
1402 * While this function may be called at any point after
1403 * kernfs_break_active_protection() is invoked, its most useful location
1404 * would be right before the enclosing kernfs operation returns.
1405 */
1406void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1407{
1408 /*
1409 * @kn->active could be in any state; however, the increment we do
1410 * here will be undone as soon as the enclosing kernfs operation
1411 * finishes and this temporary bump can't break anything. If @kn
1412 * is alive, nothing changes. If @kn is being deactivated, the
1413 * soon-to-follow put will either finish deactivation or restore
1414 * deactivated state. If @kn is already removed, the temporary
1415 * bump is guaranteed to be gone before @kn is released.
1416 */
1417 atomic_inc(&kn->active);
1418 if (kernfs_lockdep(kn))
1419 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1420}
1421
1422/**
1423 * kernfs_remove_self - remove a kernfs_node from its own method
1424 * @kn: the self kernfs_node to remove
1425 *
1426 * The caller must be running off of a kernfs operation which is invoked
1427 * with an active reference - e.g. one of kernfs_ops. This can be used to
1428 * implement a file operation which deletes itself.
1429 *
1430 * For example, the "delete" file for a sysfs device directory can be
1431 * implemented by invoking kernfs_remove_self() on the "delete" file
1432 * itself. This function breaks the circular dependency of trying to
1433 * deactivate self while holding an active ref itself. It isn't necessary
1434 * to modify the usual removal path to use kernfs_remove_self(). The
1435 * "delete" implementation can simply invoke kernfs_remove_self() on self
1436 * before proceeding with the usual removal path. kernfs will ignore later
1437 * kernfs_remove() on self.
1438 *
1439 * kernfs_remove_self() can be called multiple times concurrently on the
1440 * same kernfs_node. Only the first one actually performs removal and
1441 * returns %true. All others will wait until the kernfs operation which
1442 * won self-removal finishes and return %false. Note that the losers wait
1443 * for the completion of not only the winning kernfs_remove_self() but also
1444 * the whole kernfs_ops which won the arbitration. This can be used to
1445 * guarantee, for example, all concurrent writes to a "delete" file to
1446 * finish only after the whole operation is complete.
1447 */
1448bool kernfs_remove_self(struct kernfs_node *kn)
1449{
1450 bool ret;
1451
1452 mutex_lock(&kernfs_mutex);
1453 kernfs_break_active_protection(kn);
1454
1455 /*
1456 * SUICIDAL is used to arbitrate among competing invocations. Only
1457 * the first one will actually perform removal. When the removal
1458 * is complete, SUICIDED is set and the active ref is restored
1459 * while holding kernfs_mutex. The ones which lost arbitration
1460 * waits for SUICDED && drained which can happen only after the
1461 * enclosing kernfs operation which executed the winning instance
1462 * of kernfs_remove_self() finished.
1463 */
1464 if (!(kn->flags & KERNFS_SUICIDAL)) {
1465 kn->flags |= KERNFS_SUICIDAL;
1466 __kernfs_remove(kn);
1467 kn->flags |= KERNFS_SUICIDED;
1468 ret = true;
1469 } else {
1470 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1471 DEFINE_WAIT(wait);
1472
1473 while (true) {
1474 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1475
1476 if ((kn->flags & KERNFS_SUICIDED) &&
1477 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1478 break;
1479
1480 mutex_unlock(&kernfs_mutex);
1481 schedule();
1482 mutex_lock(&kernfs_mutex);
1483 }
1484 finish_wait(waitq, &wait);
1485 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1486 ret = false;
1487 }
1488
1489 /*
1490 * This must be done while holding kernfs_mutex; otherwise, waiting
1491 * for SUICIDED && deactivated could finish prematurely.
1492 */
1493 kernfs_unbreak_active_protection(kn);
1494
1495 mutex_unlock(&kernfs_mutex);
1496 return ret;
1497}
1498
1499/**
1500 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1501 * @parent: parent of the target
1502 * @name: name of the kernfs_node to remove
1503 * @ns: namespace tag of the kernfs_node to remove
1504 *
1505 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1506 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1507 */
1508int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1509 const void *ns)
1510{
1511 struct kernfs_node *kn;
1512
1513 if (!parent) {
1514 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1515 name);
1516 return -ENOENT;
1517 }
1518
1519 mutex_lock(&kernfs_mutex);
1520
1521 kn = kernfs_find_ns(parent, name, ns);
1522 if (kn) {
1523 kernfs_get(kn);
1524 __kernfs_remove(kn);
1525 kernfs_put(kn);
1526 }
1527
1528 mutex_unlock(&kernfs_mutex);
1529
1530 if (kn)
1531 return 0;
1532 else
1533 return -ENOENT;
1534}
1535
1536/**
1537 * kernfs_rename_ns - move and rename a kernfs_node
1538 * @kn: target node
1539 * @new_parent: new parent to put @sd under
1540 * @new_name: new name
1541 * @new_ns: new namespace tag
1542 */
1543int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1544 const char *new_name, const void *new_ns)
1545{
1546 struct kernfs_node *old_parent;
1547 const char *old_name = NULL;
1548 int error;
1549
1550 /* can't move or rename root */
1551 if (!kn->parent)
1552 return -EINVAL;
1553
1554 mutex_lock(&kernfs_mutex);
1555
1556 error = -ENOENT;
1557 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1558 (new_parent->flags & KERNFS_EMPTY_DIR))
1559 goto out;
1560
1561 error = 0;
1562 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1563 (strcmp(kn->name, new_name) == 0))
1564 goto out; /* nothing to rename */
1565
1566 error = -EEXIST;
1567 if (kernfs_find_ns(new_parent, new_name, new_ns))
1568 goto out;
1569
1570 /* rename kernfs_node */
1571 if (strcmp(kn->name, new_name) != 0) {
1572 error = -ENOMEM;
1573 new_name = kstrdup_const(new_name, GFP_KERNEL);
1574 if (!new_name)
1575 goto out;
1576 } else {
1577 new_name = NULL;
1578 }
1579
1580 /*
1581 * Move to the appropriate place in the appropriate directories rbtree.
1582 */
1583 kernfs_unlink_sibling(kn);
1584 kernfs_get(new_parent);
1585
1586 /* rename_lock protects ->parent and ->name accessors */
1587 spin_lock_irq(&kernfs_rename_lock);
1588
1589 old_parent = kn->parent;
1590 kn->parent = new_parent;
1591
1592 kn->ns = new_ns;
1593 if (new_name) {
1594 old_name = kn->name;
1595 kn->name = new_name;
1596 }
1597
1598 spin_unlock_irq(&kernfs_rename_lock);
1599
1600 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1601 kernfs_link_sibling(kn);
1602
1603 kernfs_put(old_parent);
1604 kfree_const(old_name);
1605
1606 error = 0;
1607 out:
1608 mutex_unlock(&kernfs_mutex);
1609 return error;
1610}
1611
1612/* Relationship between s_mode and the DT_xxx types */
1613static inline unsigned char dt_type(struct kernfs_node *kn)
1614{
1615 return (kn->mode >> 12) & 15;
1616}
1617
1618static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1619{
1620 kernfs_put(filp->private_data);
1621 return 0;
1622}
1623
1624static struct kernfs_node *kernfs_dir_pos(const void *ns,
1625 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1626{
1627 if (pos) {
1628 int valid = kernfs_active(pos) &&
1629 pos->parent == parent && hash == pos->hash;
1630 kernfs_put(pos);
1631 if (!valid)
1632 pos = NULL;
1633 }
1634 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1635 struct rb_node *node = parent->dir.children.rb_node;
1636 while (node) {
1637 pos = rb_to_kn(node);
1638
1639 if (hash < pos->hash)
1640 node = node->rb_left;
1641 else if (hash > pos->hash)
1642 node = node->rb_right;
1643 else
1644 break;
1645 }
1646 }
1647 /* Skip over entries which are dying/dead or in the wrong namespace */
1648 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1649 struct rb_node *node = rb_next(&pos->rb);
1650 if (!node)
1651 pos = NULL;
1652 else
1653 pos = rb_to_kn(node);
1654 }
1655 return pos;
1656}
1657
1658static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1659 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1660{
1661 pos = kernfs_dir_pos(ns, parent, ino, pos);
1662 if (pos) {
1663 do {
1664 struct rb_node *node = rb_next(&pos->rb);
1665 if (!node)
1666 pos = NULL;
1667 else
1668 pos = rb_to_kn(node);
1669 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1670 }
1671 return pos;
1672}
1673
1674static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1675{
1676 struct dentry *dentry = file->f_path.dentry;
1677 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1678 struct kernfs_node *pos = file->private_data;
1679 const void *ns = NULL;
1680
1681 if (!dir_emit_dots(file, ctx))
1682 return 0;
1683 mutex_lock(&kernfs_mutex);
1684
1685 if (kernfs_ns_enabled(parent))
1686 ns = kernfs_info(dentry->d_sb)->ns;
1687
1688 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1689 pos;
1690 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1691 const char *name = pos->name;
1692 unsigned int type = dt_type(pos);
1693 int len = strlen(name);
1694 ino_t ino = kernfs_ino(pos);
1695
1696 ctx->pos = pos->hash;
1697 file->private_data = pos;
1698 kernfs_get(pos);
1699
1700 mutex_unlock(&kernfs_mutex);
1701 if (!dir_emit(ctx, name, len, ino, type))
1702 return 0;
1703 mutex_lock(&kernfs_mutex);
1704 }
1705 mutex_unlock(&kernfs_mutex);
1706 file->private_data = NULL;
1707 ctx->pos = INT_MAX;
1708 return 0;
1709}
1710
1711const struct file_operations kernfs_dir_fops = {
1712 .read = generic_read_dir,
1713 .iterate_shared = kernfs_fop_readdir,
1714 .release = kernfs_dir_fop_release,
1715 .llseek = generic_file_llseek,
1716};
diff --git a/fs/kernfs/file.c b/fs/kernfs/file.c
new file mode 100644
index 000000000..c75719312
--- /dev/null
+++ b/fs/kernfs/file.c
@@ -0,0 +1,1020 @@
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/file.c - kernfs file implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/fs.h>
11#include <linux/seq_file.h>
12#include <linux/slab.h>
13#include <linux/poll.h>
14#include <linux/pagemap.h>
15#include <linux/sched/mm.h>
16#include <linux/fsnotify.h>
17#include <linux/uio.h>
18
19#include "kernfs-internal.h"
20
21/*
22 * There's one kernfs_open_file for each open file and one kernfs_open_node
23 * for each kernfs_node with one or more open files.
24 *
25 * kernfs_node->attr.open points to kernfs_open_node. attr.open is
26 * protected by kernfs_open_node_lock.
27 *
28 * filp->private_data points to seq_file whose ->private points to
29 * kernfs_open_file. kernfs_open_files are chained at
30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31 */
32static DEFINE_SPINLOCK(kernfs_open_node_lock);
33static DEFINE_MUTEX(kernfs_open_file_mutex);
34
35struct kernfs_open_node {
36 atomic_t refcnt;
37 atomic_t event;
38 wait_queue_head_t poll;
39 struct list_head files; /* goes through kernfs_open_file.list */
40};
41
42/*
43 * kernfs_notify() may be called from any context and bounces notifications
44 * through a work item. To minimize space overhead in kernfs_node, the
45 * pending queue is implemented as a singly linked list of kernfs_nodes.
46 * The list is terminated with the self pointer so that whether a
47 * kernfs_node is on the list or not can be determined by testing the next
48 * pointer for NULL.
49 */
50#define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list)
51
52static DEFINE_SPINLOCK(kernfs_notify_lock);
53static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54
55static struct kernfs_open_file *kernfs_of(struct file *file)
56{
57 return ((struct seq_file *)file->private_data)->private;
58}
59
60/*
61 * Determine the kernfs_ops for the given kernfs_node. This function must
62 * be called while holding an active reference.
63 */
64static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65{
66 if (kn->flags & KERNFS_LOCKDEP)
67 lockdep_assert_held(kn);
68 return kn->attr.ops;
69}
70
71/*
72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74 * a seq_file iteration which is fully initialized with an active reference
75 * or an aborted kernfs_seq_start() due to get_active failure. The
76 * position pointer is the only context for each seq_file iteration and
77 * thus the stop condition should be encoded in it. As the return value is
78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79 * choice to indicate get_active failure.
80 *
81 * Unfortunately, this is complicated due to the optional custom seq_file
82 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop()
83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84 * custom seq_file operations and thus can't decide whether put_active
85 * should be performed or not only on ERR_PTR(-ENODEV).
86 *
87 * This is worked around by factoring out the custom seq_stop() and
88 * put_active part into kernfs_seq_stop_active(), skipping it from
89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91 * that kernfs_seq_stop_active() is skipped only after get_active failure.
92 */
93static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94{
95 struct kernfs_open_file *of = sf->private;
96 const struct kernfs_ops *ops = kernfs_ops(of->kn);
97
98 if (ops->seq_stop)
99 ops->seq_stop(sf, v);
100 kernfs_put_active(of->kn);
101}
102
103static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104{
105 struct kernfs_open_file *of = sf->private;
106 const struct kernfs_ops *ops;
107
108 /*
109 * @of->mutex nests outside active ref and is primarily to ensure that
110 * the ops aren't called concurrently for the same open file.
111 */
112 mutex_lock(&of->mutex);
113 if (!kernfs_get_active(of->kn))
114 return ERR_PTR(-ENODEV);
115
116 ops = kernfs_ops(of->kn);
117 if (ops->seq_start) {
118 void *next = ops->seq_start(sf, ppos);
119 /* see the comment above kernfs_seq_stop_active() */
120 if (next == ERR_PTR(-ENODEV))
121 kernfs_seq_stop_active(sf, next);
122 return next;
123 } else {
124 /*
125 * The same behavior and code as single_open(). Returns
126 * !NULL if pos is at the beginning; otherwise, NULL.
127 */
128 return NULL + !*ppos;
129 }
130}
131
132static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133{
134 struct kernfs_open_file *of = sf->private;
135 const struct kernfs_ops *ops = kernfs_ops(of->kn);
136
137 if (ops->seq_next) {
138 void *next = ops->seq_next(sf, v, ppos);
139 /* see the comment above kernfs_seq_stop_active() */
140 if (next == ERR_PTR(-ENODEV))
141 kernfs_seq_stop_active(sf, next);
142 return next;
143 } else {
144 /*
145 * The same behavior and code as single_open(), always
146 * terminate after the initial read.
147 */
148 ++*ppos;
149 return NULL;
150 }
151}
152
153static void kernfs_seq_stop(struct seq_file *sf, void *v)
154{
155 struct kernfs_open_file *of = sf->private;
156
157 if (v != ERR_PTR(-ENODEV))
158 kernfs_seq_stop_active(sf, v);
159 mutex_unlock(&of->mutex);
160}
161
162static int kernfs_seq_show(struct seq_file *sf, void *v)
163{
164 struct kernfs_open_file *of = sf->private;
165
166 of->event = atomic_read(&of->kn->attr.open->event);
167
168 return of->kn->attr.ops->seq_show(sf, v);
169}
170
171static const struct seq_operations kernfs_seq_ops = {
172 .start = kernfs_seq_start,
173 .next = kernfs_seq_next,
174 .stop = kernfs_seq_stop,
175 .show = kernfs_seq_show,
176};
177
178/*
179 * As reading a bin file can have side-effects, the exact offset and bytes
180 * specified in read(2) call should be passed to the read callback making
181 * it difficult to use seq_file. Implement simplistic custom buffering for
182 * bin files.
183 */
184static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
185{
186 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
187 ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
188 const struct kernfs_ops *ops;
189 char *buf;
190
191 buf = of->prealloc_buf;
192 if (buf)
193 mutex_lock(&of->prealloc_mutex);
194 else
195 buf = kmalloc(len, GFP_KERNEL);
196 if (!buf)
197 return -ENOMEM;
198
199 /*
200 * @of->mutex nests outside active ref and is used both to ensure that
201 * the ops aren't called concurrently for the same open file.
202 */
203 mutex_lock(&of->mutex);
204 if (!kernfs_get_active(of->kn)) {
205 len = -ENODEV;
206 mutex_unlock(&of->mutex);
207 goto out_free;
208 }
209
210 of->event = atomic_read(&of->kn->attr.open->event);
211 ops = kernfs_ops(of->kn);
212 if (ops->read)
213 len = ops->read(of, buf, len, iocb->ki_pos);
214 else
215 len = -EINVAL;
216
217 kernfs_put_active(of->kn);
218 mutex_unlock(&of->mutex);
219
220 if (len < 0)
221 goto out_free;
222
223 if (copy_to_iter(buf, len, iter) != len) {
224 len = -EFAULT;
225 goto out_free;
226 }
227
228 iocb->ki_pos += len;
229
230 out_free:
231 if (buf == of->prealloc_buf)
232 mutex_unlock(&of->prealloc_mutex);
233 else
234 kfree(buf);
235 return len;
236}
237
238static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
239{
240 if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
241 return seq_read_iter(iocb, iter);
242 return kernfs_file_read_iter(iocb, iter);
243}
244
245/*
246 * Copy data in from userland and pass it to the matching kernfs write
247 * operation.
248 *
249 * There is no easy way for us to know if userspace is only doing a partial
250 * write, so we don't support them. We expect the entire buffer to come on
251 * the first write. Hint: if you're writing a value, first read the file,
252 * modify only the the value you're changing, then write entire buffer
253 * back.
254 */
255static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
256{
257 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
258 ssize_t len = iov_iter_count(iter);
259 const struct kernfs_ops *ops;
260 char *buf;
261
262 if (of->atomic_write_len) {
263 if (len > of->atomic_write_len)
264 return -E2BIG;
265 } else {
266 len = min_t(size_t, len, PAGE_SIZE);
267 }
268
269 buf = of->prealloc_buf;
270 if (buf)
271 mutex_lock(&of->prealloc_mutex);
272 else
273 buf = kmalloc(len + 1, GFP_KERNEL);
274 if (!buf)
275 return -ENOMEM;
276
277 if (copy_from_iter(buf, len, iter) != len) {
278 len = -EFAULT;
279 goto out_free;
280 }
281 buf[len] = '\0'; /* guarantee string termination */
282
283 /*
284 * @of->mutex nests outside active ref and is used both to ensure that
285 * the ops aren't called concurrently for the same open file.
286 */
287 mutex_lock(&of->mutex);
288 if (!kernfs_get_active(of->kn)) {
289 mutex_unlock(&of->mutex);
290 len = -ENODEV;
291 goto out_free;
292 }
293
294 ops = kernfs_ops(of->kn);
295 if (ops->write)
296 len = ops->write(of, buf, len, iocb->ki_pos);
297 else
298 len = -EINVAL;
299
300 kernfs_put_active(of->kn);
301 mutex_unlock(&of->mutex);
302
303 if (len > 0)
304 iocb->ki_pos += len;
305
306out_free:
307 if (buf == of->prealloc_buf)
308 mutex_unlock(&of->prealloc_mutex);
309 else
310 kfree(buf);
311 return len;
312}
313
314static void kernfs_vma_open(struct vm_area_struct *vma)
315{
316 struct file *file = vma->vm_file;
317 struct kernfs_open_file *of = kernfs_of(file);
318
319 if (!of->vm_ops)
320 return;
321
322 if (!kernfs_get_active(of->kn))
323 return;
324
325 if (of->vm_ops->open)
326 of->vm_ops->open(vma);
327
328 kernfs_put_active(of->kn);
329}
330
331static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
332{
333 struct file *file = vmf->vma->vm_file;
334 struct kernfs_open_file *of = kernfs_of(file);
335 vm_fault_t ret;
336
337 if (!of->vm_ops)
338 return VM_FAULT_SIGBUS;
339
340 if (!kernfs_get_active(of->kn))
341 return VM_FAULT_SIGBUS;
342
343 ret = VM_FAULT_SIGBUS;
344 if (of->vm_ops->fault)
345 ret = of->vm_ops->fault(vmf);
346
347 kernfs_put_active(of->kn);
348 return ret;
349}
350
351static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
352{
353 struct file *file = vmf->vma->vm_file;
354 struct kernfs_open_file *of = kernfs_of(file);
355 vm_fault_t ret;
356
357 if (!of->vm_ops)
358 return VM_FAULT_SIGBUS;
359
360 if (!kernfs_get_active(of->kn))
361 return VM_FAULT_SIGBUS;
362
363 ret = 0;
364 if (of->vm_ops->page_mkwrite)
365 ret = of->vm_ops->page_mkwrite(vmf);
366 else
367 file_update_time(file);
368
369 kernfs_put_active(of->kn);
370 return ret;
371}
372
373static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
374 void *buf, int len, int write)
375{
376 struct file *file = vma->vm_file;
377 struct kernfs_open_file *of = kernfs_of(file);
378 int ret;
379
380 if (!of->vm_ops)
381 return -EINVAL;
382
383 if (!kernfs_get_active(of->kn))
384 return -EINVAL;
385
386 ret = -EINVAL;
387 if (of->vm_ops->access)
388 ret = of->vm_ops->access(vma, addr, buf, len, write);
389
390 kernfs_put_active(of->kn);
391 return ret;
392}
393
394#ifdef CONFIG_NUMA
395static int kernfs_vma_set_policy(struct vm_area_struct *vma,
396 struct mempolicy *new)
397{
398 struct file *file = vma->vm_file;
399 struct kernfs_open_file *of = kernfs_of(file);
400 int ret;
401
402 if (!of->vm_ops)
403 return 0;
404
405 if (!kernfs_get_active(of->kn))
406 return -EINVAL;
407
408 ret = 0;
409 if (of->vm_ops->set_policy)
410 ret = of->vm_ops->set_policy(vma, new);
411
412 kernfs_put_active(of->kn);
413 return ret;
414}
415
416static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
417 unsigned long addr)
418{
419 struct file *file = vma->vm_file;
420 struct kernfs_open_file *of = kernfs_of(file);
421 struct mempolicy *pol;
422
423 if (!of->vm_ops)
424 return vma->vm_policy;
425
426 if (!kernfs_get_active(of->kn))
427 return vma->vm_policy;
428
429 pol = vma->vm_policy;
430 if (of->vm_ops->get_policy)
431 pol = of->vm_ops->get_policy(vma, addr);
432
433 kernfs_put_active(of->kn);
434 return pol;
435}
436
437#endif
438
439static const struct vm_operations_struct kernfs_vm_ops = {
440 .open = kernfs_vma_open,
441 .fault = kernfs_vma_fault,
442 .page_mkwrite = kernfs_vma_page_mkwrite,
443 .access = kernfs_vma_access,
444#ifdef CONFIG_NUMA
445 .set_policy = kernfs_vma_set_policy,
446 .get_policy = kernfs_vma_get_policy,
447#endif
448};
449
450static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
451{
452 struct kernfs_open_file *of = kernfs_of(file);
453 const struct kernfs_ops *ops;
454 int rc;
455
456 /*
457 * mmap path and of->mutex are prone to triggering spurious lockdep
458 * warnings and we don't want to add spurious locking dependency
459 * between the two. Check whether mmap is actually implemented
460 * without grabbing @of->mutex by testing HAS_MMAP flag. See the
461 * comment in kernfs_file_open() for more details.
462 */
463 if (!(of->kn->flags & KERNFS_HAS_MMAP))
464 return -ENODEV;
465
466 mutex_lock(&of->mutex);
467
468 rc = -ENODEV;
469 if (!kernfs_get_active(of->kn))
470 goto out_unlock;
471
472 ops = kernfs_ops(of->kn);
473 rc = ops->mmap(of, vma);
474 if (rc)
475 goto out_put;
476
477 /*
478 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
479 * to satisfy versions of X which crash if the mmap fails: that
480 * substitutes a new vm_file, and we don't then want bin_vm_ops.
481 */
482 if (vma->vm_file != file)
483 goto out_put;
484
485 rc = -EINVAL;
486 if (of->mmapped && of->vm_ops != vma->vm_ops)
487 goto out_put;
488
489 /*
490 * It is not possible to successfully wrap close.
491 * So error if someone is trying to use close.
492 */
493 rc = -EINVAL;
494 if (vma->vm_ops && vma->vm_ops->close)
495 goto out_put;
496
497 rc = 0;
498 of->mmapped = true;
499 of->vm_ops = vma->vm_ops;
500 vma->vm_ops = &kernfs_vm_ops;
501out_put:
502 kernfs_put_active(of->kn);
503out_unlock:
504 mutex_unlock(&of->mutex);
505
506 return rc;
507}
508
509/**
510 * kernfs_get_open_node - get or create kernfs_open_node
511 * @kn: target kernfs_node
512 * @of: kernfs_open_file for this instance of open
513 *
514 * If @kn->attr.open exists, increment its reference count; otherwise,
515 * create one. @of is chained to the files list.
516 *
517 * LOCKING:
518 * Kernel thread context (may sleep).
519 *
520 * RETURNS:
521 * 0 on success, -errno on failure.
522 */
523static int kernfs_get_open_node(struct kernfs_node *kn,
524 struct kernfs_open_file *of)
525{
526 struct kernfs_open_node *on, *new_on = NULL;
527
528 retry:
529 mutex_lock(&kernfs_open_file_mutex);
530 spin_lock_irq(&kernfs_open_node_lock);
531
532 if (!kn->attr.open && new_on) {
533 kn->attr.open = new_on;
534 new_on = NULL;
535 }
536
537 on = kn->attr.open;
538 if (on) {
539 atomic_inc(&on->refcnt);
540 list_add_tail(&of->list, &on->files);
541 }
542
543 spin_unlock_irq(&kernfs_open_node_lock);
544 mutex_unlock(&kernfs_open_file_mutex);
545
546 if (on) {
547 kfree(new_on);
548 return 0;
549 }
550
551 /* not there, initialize a new one and retry */
552 new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
553 if (!new_on)
554 return -ENOMEM;
555
556 atomic_set(&new_on->refcnt, 0);
557 atomic_set(&new_on->event, 1);
558 init_waitqueue_head(&new_on->poll);
559 INIT_LIST_HEAD(&new_on->files);
560 goto retry;
561}
562
563/**
564 * kernfs_put_open_node - put kernfs_open_node
565 * @kn: target kernfs_nodet
566 * @of: associated kernfs_open_file
567 *
568 * Put @kn->attr.open and unlink @of from the files list. If
569 * reference count reaches zero, disassociate and free it.
570 *
571 * LOCKING:
572 * None.
573 */
574static void kernfs_put_open_node(struct kernfs_node *kn,
575 struct kernfs_open_file *of)
576{
577 struct kernfs_open_node *on = kn->attr.open;
578 unsigned long flags;
579
580 mutex_lock(&kernfs_open_file_mutex);
581 spin_lock_irqsave(&kernfs_open_node_lock, flags);
582
583 if (of)
584 list_del(&of->list);
585
586 if (atomic_dec_and_test(&on->refcnt))
587 kn->attr.open = NULL;
588 else
589 on = NULL;
590
591 spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
592 mutex_unlock(&kernfs_open_file_mutex);
593
594 kfree(on);
595}
596
597static int kernfs_fop_open(struct inode *inode, struct file *file)
598{
599 struct kernfs_node *kn = inode->i_private;
600 struct kernfs_root *root = kernfs_root(kn);
601 const struct kernfs_ops *ops;
602 struct kernfs_open_file *of;
603 bool has_read, has_write, has_mmap;
604 int error = -EACCES;
605
606 if (!kernfs_get_active(kn))
607 return -ENODEV;
608
609 ops = kernfs_ops(kn);
610
611 has_read = ops->seq_show || ops->read || ops->mmap;
612 has_write = ops->write || ops->mmap;
613 has_mmap = ops->mmap;
614
615 /* see the flag definition for details */
616 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
617 if ((file->f_mode & FMODE_WRITE) &&
618 (!(inode->i_mode & S_IWUGO) || !has_write))
619 goto err_out;
620
621 if ((file->f_mode & FMODE_READ) &&
622 (!(inode->i_mode & S_IRUGO) || !has_read))
623 goto err_out;
624 }
625
626 /* allocate a kernfs_open_file for the file */
627 error = -ENOMEM;
628 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
629 if (!of)
630 goto err_out;
631
632 /*
633 * The following is done to give a different lockdep key to
634 * @of->mutex for files which implement mmap. This is a rather
635 * crude way to avoid false positive lockdep warning around
636 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
637 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
638 * which mm->mmap_lock nests, while holding @of->mutex. As each
639 * open file has a separate mutex, it's okay as long as those don't
640 * happen on the same file. At this point, we can't easily give
641 * each file a separate locking class. Let's differentiate on
642 * whether the file has mmap or not for now.
643 *
644 * Both paths of the branch look the same. They're supposed to
645 * look that way and give @of->mutex different static lockdep keys.
646 */
647 if (has_mmap)
648 mutex_init(&of->mutex);
649 else
650 mutex_init(&of->mutex);
651
652 of->kn = kn;
653 of->file = file;
654
655 /*
656 * Write path needs to atomic_write_len outside active reference.
657 * Cache it in open_file. See kernfs_fop_write_iter() for details.
658 */
659 of->atomic_write_len = ops->atomic_write_len;
660
661 error = -EINVAL;
662 /*
663 * ->seq_show is incompatible with ->prealloc,
664 * as seq_read does its own allocation.
665 * ->read must be used instead.
666 */
667 if (ops->prealloc && ops->seq_show)
668 goto err_free;
669 if (ops->prealloc) {
670 int len = of->atomic_write_len ?: PAGE_SIZE;
671 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
672 error = -ENOMEM;
673 if (!of->prealloc_buf)
674 goto err_free;
675 mutex_init(&of->prealloc_mutex);
676 }
677
678 /*
679 * Always instantiate seq_file even if read access doesn't use
680 * seq_file or is not requested. This unifies private data access
681 * and readable regular files are the vast majority anyway.
682 */
683 if (ops->seq_show)
684 error = seq_open(file, &kernfs_seq_ops);
685 else
686 error = seq_open(file, NULL);
687 if (error)
688 goto err_free;
689
690 of->seq_file = file->private_data;
691 of->seq_file->private = of;
692
693 /* seq_file clears PWRITE unconditionally, restore it if WRITE */
694 if (file->f_mode & FMODE_WRITE)
695 file->f_mode |= FMODE_PWRITE;
696
697 /* make sure we have open node struct */
698 error = kernfs_get_open_node(kn, of);
699 if (error)
700 goto err_seq_release;
701
702 if (ops->open) {
703 /* nobody has access to @of yet, skip @of->mutex */
704 error = ops->open(of);
705 if (error)
706 goto err_put_node;
707 }
708
709 /* open succeeded, put active references */
710 kernfs_put_active(kn);
711 return 0;
712
713err_put_node:
714 kernfs_put_open_node(kn, of);
715err_seq_release:
716 seq_release(inode, file);
717err_free:
718 kfree(of->prealloc_buf);
719 kfree(of);
720err_out:
721 kernfs_put_active(kn);
722 return error;
723}
724
725/* used from release/drain to ensure that ->release() is called exactly once */
726static void kernfs_release_file(struct kernfs_node *kn,
727 struct kernfs_open_file *of)
728{
729 /*
730 * @of is guaranteed to have no other file operations in flight and
731 * we just want to synchronize release and drain paths.
732 * @kernfs_open_file_mutex is enough. @of->mutex can't be used
733 * here because drain path may be called from places which can
734 * cause circular dependency.
735 */
736 lockdep_assert_held(&kernfs_open_file_mutex);
737
738 if (!of->released) {
739 /*
740 * A file is never detached without being released and we
741 * need to be able to release files which are deactivated
742 * and being drained. Don't use kernfs_ops().
743 */
744 kn->attr.ops->release(of);
745 of->released = true;
746 }
747}
748
749static int kernfs_fop_release(struct inode *inode, struct file *filp)
750{
751 struct kernfs_node *kn = inode->i_private;
752 struct kernfs_open_file *of = kernfs_of(filp);
753
754 if (kn->flags & KERNFS_HAS_RELEASE) {
755 mutex_lock(&kernfs_open_file_mutex);
756 kernfs_release_file(kn, of);
757 mutex_unlock(&kernfs_open_file_mutex);
758 }
759
760 kernfs_put_open_node(kn, of);
761 seq_release(inode, filp);
762 kfree(of->prealloc_buf);
763 kfree(of);
764
765 return 0;
766}
767
768void kernfs_drain_open_files(struct kernfs_node *kn)
769{
770 struct kernfs_open_node *on;
771 struct kernfs_open_file *of;
772
773 if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
774 return;
775
776 spin_lock_irq(&kernfs_open_node_lock);
777 on = kn->attr.open;
778 if (on)
779 atomic_inc(&on->refcnt);
780 spin_unlock_irq(&kernfs_open_node_lock);
781 if (!on)
782 return;
783
784 mutex_lock(&kernfs_open_file_mutex);
785
786 list_for_each_entry(of, &on->files, list) {
787 struct inode *inode = file_inode(of->file);
788
789 if (kn->flags & KERNFS_HAS_MMAP)
790 unmap_mapping_range(inode->i_mapping, 0, 0, 1);
791
792 if (kn->flags & KERNFS_HAS_RELEASE)
793 kernfs_release_file(kn, of);
794 }
795
796 mutex_unlock(&kernfs_open_file_mutex);
797
798 kernfs_put_open_node(kn, NULL);
799}
800
801/*
802 * Kernfs attribute files are pollable. The idea is that you read
803 * the content and then you use 'poll' or 'select' to wait for
804 * the content to change. When the content changes (assuming the
805 * manager for the kobject supports notification), poll will
806 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
807 * it is waiting for read, write, or exceptions.
808 * Once poll/select indicates that the value has changed, you
809 * need to close and re-open the file, or seek to 0 and read again.
810 * Reminder: this only works for attributes which actively support
811 * it, and it is not possible to test an attribute from userspace
812 * to see if it supports poll (Neither 'poll' nor 'select' return
813 * an appropriate error code). When in doubt, set a suitable timeout value.
814 */
815__poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
816{
817 struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
818 struct kernfs_open_node *on = kn->attr.open;
819
820 poll_wait(of->file, &on->poll, wait);
821
822 if (of->event != atomic_read(&on->event))
823 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
824
825 return DEFAULT_POLLMASK;
826}
827
828static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
829{
830 struct kernfs_open_file *of = kernfs_of(filp);
831 struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
832 __poll_t ret;
833
834 if (!kernfs_get_active(kn))
835 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
836
837 if (kn->attr.ops->poll)
838 ret = kn->attr.ops->poll(of, wait);
839 else
840 ret = kernfs_generic_poll(of, wait);
841
842 kernfs_put_active(kn);
843 return ret;
844}
845
846static void kernfs_notify_workfn(struct work_struct *work)
847{
848 struct kernfs_node *kn;
849 struct kernfs_super_info *info;
850repeat:
851 /* pop one off the notify_list */
852 spin_lock_irq(&kernfs_notify_lock);
853 kn = kernfs_notify_list;
854 if (kn == KERNFS_NOTIFY_EOL) {
855 spin_unlock_irq(&kernfs_notify_lock);
856 return;
857 }
858 kernfs_notify_list = kn->attr.notify_next;
859 kn->attr.notify_next = NULL;
860 spin_unlock_irq(&kernfs_notify_lock);
861
862 /* kick fsnotify */
863 mutex_lock(&kernfs_mutex);
864
865 list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
866 struct kernfs_node *parent;
867 struct inode *p_inode = NULL;
868 struct inode *inode;
869 struct qstr name;
870
871 /*
872 * We want fsnotify_modify() on @kn but as the
873 * modifications aren't originating from userland don't
874 * have the matching @file available. Look up the inodes
875 * and generate the events manually.
876 */
877 inode = ilookup(info->sb, kernfs_ino(kn));
878 if (!inode)
879 continue;
880
881 name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
882 parent = kernfs_get_parent(kn);
883 if (parent) {
884 p_inode = ilookup(info->sb, kernfs_ino(parent));
885 if (p_inode) {
886 fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
887 inode, FSNOTIFY_EVENT_INODE,
888 p_inode, &name, inode, 0);
889 iput(p_inode);
890 }
891
892 kernfs_put(parent);
893 }
894
895 if (!p_inode)
896 fsnotify_inode(inode, FS_MODIFY);
897
898 iput(inode);
899 }
900
901 mutex_unlock(&kernfs_mutex);
902 kernfs_put(kn);
903 goto repeat;
904}
905
906/**
907 * kernfs_notify - notify a kernfs file
908 * @kn: file to notify
909 *
910 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any
911 * context.
912 */
913void kernfs_notify(struct kernfs_node *kn)
914{
915 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
916 unsigned long flags;
917 struct kernfs_open_node *on;
918
919 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
920 return;
921
922 /* kick poll immediately */
923 spin_lock_irqsave(&kernfs_open_node_lock, flags);
924 on = kn->attr.open;
925 if (on) {
926 atomic_inc(&on->event);
927 wake_up_interruptible(&on->poll);
928 }
929 spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
930
931 /* schedule work to kick fsnotify */
932 spin_lock_irqsave(&kernfs_notify_lock, flags);
933 if (!kn->attr.notify_next) {
934 kernfs_get(kn);
935 kn->attr.notify_next = kernfs_notify_list;
936 kernfs_notify_list = kn;
937 schedule_work(&kernfs_notify_work);
938 }
939 spin_unlock_irqrestore(&kernfs_notify_lock, flags);
940}
941EXPORT_SYMBOL_GPL(kernfs_notify);
942
943const struct file_operations kernfs_file_fops = {
944 .read_iter = kernfs_fop_read_iter,
945 .write_iter = kernfs_fop_write_iter,
946 .llseek = generic_file_llseek,
947 .mmap = kernfs_fop_mmap,
948 .open = kernfs_fop_open,
949 .release = kernfs_fop_release,
950 .poll = kernfs_fop_poll,
951 .fsync = noop_fsync,
952 .splice_read = generic_file_splice_read,
953 .splice_write = iter_file_splice_write,
954};
955
956/**
957 * __kernfs_create_file - kernfs internal function to create a file
958 * @parent: directory to create the file in
959 * @name: name of the file
960 * @mode: mode of the file
961 * @uid: uid of the file
962 * @gid: gid of the file
963 * @size: size of the file
964 * @ops: kernfs operations for the file
965 * @priv: private data for the file
966 * @ns: optional namespace tag of the file
967 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
968 *
969 * Returns the created node on success, ERR_PTR() value on error.
970 */
971struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
972 const char *name,
973 umode_t mode, kuid_t uid, kgid_t gid,
974 loff_t size,
975 const struct kernfs_ops *ops,
976 void *priv, const void *ns,
977 struct lock_class_key *key)
978{
979 struct kernfs_node *kn;
980 unsigned flags;
981 int rc;
982
983 flags = KERNFS_FILE;
984
985 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
986 uid, gid, flags);
987 if (!kn)
988 return ERR_PTR(-ENOMEM);
989
990 kn->attr.ops = ops;
991 kn->attr.size = size;
992 kn->ns = ns;
993 kn->priv = priv;
994
995#ifdef CONFIG_DEBUG_LOCK_ALLOC
996 if (key) {
997 lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
998 kn->flags |= KERNFS_LOCKDEP;
999 }
1000#endif
1001
1002 /*
1003 * kn->attr.ops is accesible only while holding active ref. We
1004 * need to know whether some ops are implemented outside active
1005 * ref. Cache their existence in flags.
1006 */
1007 if (ops->seq_show)
1008 kn->flags |= KERNFS_HAS_SEQ_SHOW;
1009 if (ops->mmap)
1010 kn->flags |= KERNFS_HAS_MMAP;
1011 if (ops->release)
1012 kn->flags |= KERNFS_HAS_RELEASE;
1013
1014 rc = kernfs_add_one(kn);
1015 if (rc) {
1016 kernfs_put(kn);
1017 return ERR_PTR(rc);
1018 }
1019 return kn;
1020}
diff --git a/fs/kernfs/inode.c b/fs/kernfs/inode.c
new file mode 100644
index 000000000..fc2469a20
--- /dev/null
+++ b/fs/kernfs/inode.c
@@ -0,0 +1,435 @@
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/inode.c - kernfs inode implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/pagemap.h>
11#include <linux/backing-dev.h>
12#include <linux/capability.h>
13#include <linux/errno.h>
14#include <linux/slab.h>
15#include <linux/xattr.h>
16#include <linux/security.h>
17
18#include "kernfs-internal.h"
19
20static const struct address_space_operations kernfs_aops = {
21 .readpage = simple_readpage,
22 .write_begin = simple_write_begin,
23 .write_end = simple_write_end,
24};
25
26static const struct inode_operations kernfs_iops = {
27 .permission = kernfs_iop_permission,
28 .setattr = kernfs_iop_setattr,
29 .getattr = kernfs_iop_getattr,
30 .listxattr = kernfs_iop_listxattr,
31};
32
33static struct kernfs_iattrs *__kernfs_iattrs(struct kernfs_node *kn, int alloc)
34{
35 static DEFINE_MUTEX(iattr_mutex);
36 struct kernfs_iattrs *ret;
37
38 mutex_lock(&iattr_mutex);
39
40 if (kn->iattr || !alloc)
41 goto out_unlock;
42
43 kn->iattr = kmem_cache_zalloc(kernfs_iattrs_cache, GFP_KERNEL);
44 if (!kn->iattr)
45 goto out_unlock;
46
47 /* assign default attributes */
48 kn->iattr->ia_uid = GLOBAL_ROOT_UID;
49 kn->iattr->ia_gid = GLOBAL_ROOT_GID;
50
51 ktime_get_real_ts64(&kn->iattr->ia_atime);
52 kn->iattr->ia_mtime = kn->iattr->ia_atime;
53 kn->iattr->ia_ctime = kn->iattr->ia_atime;
54
55 simple_xattrs_init(&kn->iattr->xattrs);
56 atomic_set(&kn->iattr->nr_user_xattrs, 0);
57 atomic_set(&kn->iattr->user_xattr_size, 0);
58out_unlock:
59 ret = kn->iattr;
60 mutex_unlock(&iattr_mutex);
61 return ret;
62}
63
64static struct kernfs_iattrs *kernfs_iattrs(struct kernfs_node *kn)
65{
66 return __kernfs_iattrs(kn, 1);
67}
68
69static struct kernfs_iattrs *kernfs_iattrs_noalloc(struct kernfs_node *kn)
70{
71 return __kernfs_iattrs(kn, 0);
72}
73
74int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
75{
76 struct kernfs_iattrs *attrs;
77 unsigned int ia_valid = iattr->ia_valid;
78
79 attrs = kernfs_iattrs(kn);
80 if (!attrs)
81 return -ENOMEM;
82
83 if (ia_valid & ATTR_UID)
84 attrs->ia_uid = iattr->ia_uid;
85 if (ia_valid & ATTR_GID)
86 attrs->ia_gid = iattr->ia_gid;
87 if (ia_valid & ATTR_ATIME)
88 attrs->ia_atime = iattr->ia_atime;
89 if (ia_valid & ATTR_MTIME)
90 attrs->ia_mtime = iattr->ia_mtime;
91 if (ia_valid & ATTR_CTIME)
92 attrs->ia_ctime = iattr->ia_ctime;
93 if (ia_valid & ATTR_MODE)
94 kn->mode = iattr->ia_mode;
95 return 0;
96}
97
98/**
99 * kernfs_setattr - set iattr on a node
100 * @kn: target node
101 * @iattr: iattr to set
102 *
103 * Returns 0 on success, -errno on failure.
104 */
105int kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr)
106{
107 int ret;
108
109 mutex_lock(&kernfs_mutex);
110 ret = __kernfs_setattr(kn, iattr);
111 mutex_unlock(&kernfs_mutex);
112 return ret;
113}
114
115int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr)
116{
117 struct inode *inode = d_inode(dentry);
118 struct kernfs_node *kn = inode->i_private;
119 int error;
120
121 if (!kn)
122 return -EINVAL;
123
124 mutex_lock(&kernfs_mutex);
125 error = setattr_prepare(dentry, iattr);
126 if (error)
127 goto out;
128
129 error = __kernfs_setattr(kn, iattr);
130 if (error)
131 goto out;
132
133 /* this ignores size changes */
134 setattr_copy(inode, iattr);
135
136out:
137 mutex_unlock(&kernfs_mutex);
138 return error;
139}
140
141ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size)
142{
143 struct kernfs_node *kn = kernfs_dentry_node(dentry);
144 struct kernfs_iattrs *attrs;
145
146 attrs = kernfs_iattrs(kn);
147 if (!attrs)
148 return -ENOMEM;
149
150 return simple_xattr_list(d_inode(dentry), &attrs->xattrs, buf, size);
151}
152
153static inline void set_default_inode_attr(struct inode *inode, umode_t mode)
154{
155 inode->i_mode = mode;
156 inode->i_atime = inode->i_mtime =
157 inode->i_ctime = current_time(inode);
158}
159
160static inline void set_inode_attr(struct inode *inode,
161 struct kernfs_iattrs *attrs)
162{
163 inode->i_uid = attrs->ia_uid;
164 inode->i_gid = attrs->ia_gid;
165 inode->i_atime = attrs->ia_atime;
166 inode->i_mtime = attrs->ia_mtime;
167 inode->i_ctime = attrs->ia_ctime;
168}
169
170static void kernfs_refresh_inode(struct kernfs_node *kn, struct inode *inode)
171{
172 struct kernfs_iattrs *attrs = kn->iattr;
173
174 inode->i_mode = kn->mode;
175 if (attrs)
176 /*
177 * kernfs_node has non-default attributes get them from
178 * persistent copy in kernfs_node.
179 */
180 set_inode_attr(inode, attrs);
181
182 if (kernfs_type(kn) == KERNFS_DIR)
183 set_nlink(inode, kn->dir.subdirs + 2);
184}
185
186int kernfs_iop_getattr(const struct path *path, struct kstat *stat,
187 u32 request_mask, unsigned int query_flags)
188{
189 struct inode *inode = d_inode(path->dentry);
190 struct kernfs_node *kn = inode->i_private;
191
192 mutex_lock(&kernfs_mutex);
193 kernfs_refresh_inode(kn, inode);
194 mutex_unlock(&kernfs_mutex);
195
196 generic_fillattr(inode, stat);
197 return 0;
198}
199
200static void kernfs_init_inode(struct kernfs_node *kn, struct inode *inode)
201{
202 kernfs_get(kn);
203 inode->i_private = kn;
204 inode->i_mapping->a_ops = &kernfs_aops;
205 inode->i_op = &kernfs_iops;
206 inode->i_generation = kernfs_gen(kn);
207
208 set_default_inode_attr(inode, kn->mode);
209 kernfs_refresh_inode(kn, inode);
210
211 /* initialize inode according to type */
212 switch (kernfs_type(kn)) {
213 case KERNFS_DIR:
214 inode->i_op = &kernfs_dir_iops;
215 inode->i_fop = &kernfs_dir_fops;
216 if (kn->flags & KERNFS_EMPTY_DIR)
217 make_empty_dir_inode(inode);
218 break;
219 case KERNFS_FILE:
220 inode->i_size = kn->attr.size;
221 inode->i_fop = &kernfs_file_fops;
222 break;
223 case KERNFS_LINK:
224 inode->i_op = &kernfs_symlink_iops;
225 break;
226 default:
227 BUG();
228 }
229
230 unlock_new_inode(inode);
231}
232
233/**
234 * kernfs_get_inode - get inode for kernfs_node
235 * @sb: super block
236 * @kn: kernfs_node to allocate inode for
237 *
238 * Get inode for @kn. If such inode doesn't exist, a new inode is
239 * allocated and basics are initialized. New inode is returned
240 * locked.
241 *
242 * LOCKING:
243 * Kernel thread context (may sleep).
244 *
245 * RETURNS:
246 * Pointer to allocated inode on success, NULL on failure.
247 */
248struct inode *kernfs_get_inode(struct super_block *sb, struct kernfs_node *kn)
249{
250 struct inode *inode;
251
252 inode = iget_locked(sb, kernfs_ino(kn));
253 if (inode && (inode->i_state & I_NEW))
254 kernfs_init_inode(kn, inode);
255
256 return inode;
257}
258
259/*
260 * The kernfs_node serves as both an inode and a directory entry for
261 * kernfs. To prevent the kernfs inode numbers from being freed
262 * prematurely we take a reference to kernfs_node from the kernfs inode. A
263 * super_operations.evict_inode() implementation is needed to drop that
264 * reference upon inode destruction.
265 */
266void kernfs_evict_inode(struct inode *inode)
267{
268 struct kernfs_node *kn = inode->i_private;
269
270 truncate_inode_pages_final(&inode->i_data);
271 clear_inode(inode);
272 kernfs_put(kn);
273}
274
275int kernfs_iop_permission(struct inode *inode, int mask)
276{
277 struct kernfs_node *kn;
278
279 if (mask & MAY_NOT_BLOCK)
280 return -ECHILD;
281
282 kn = inode->i_private;
283
284 mutex_lock(&kernfs_mutex);
285 kernfs_refresh_inode(kn, inode);
286 mutex_unlock(&kernfs_mutex);
287
288 return generic_permission(inode, mask);
289}
290
291int kernfs_xattr_get(struct kernfs_node *kn, const char *name,
292 void *value, size_t size)
293{
294 struct kernfs_iattrs *attrs = kernfs_iattrs_noalloc(kn);
295 if (!attrs)
296 return -ENODATA;
297
298 return simple_xattr_get(&attrs->xattrs, name, value, size);
299}
300
301int kernfs_xattr_set(struct kernfs_node *kn, const char *name,
302 const void *value, size_t size, int flags)
303{
304 struct kernfs_iattrs *attrs = kernfs_iattrs(kn);
305 if (!attrs)
306 return -ENOMEM;
307
308 return simple_xattr_set(&attrs->xattrs, name, value, size, flags, NULL);
309}
310
311static int kernfs_vfs_xattr_get(const struct xattr_handler *handler,
312 struct dentry *unused, struct inode *inode,
313 const char *suffix, void *value, size_t size)
314{
315 const char *name = xattr_full_name(handler, suffix);
316 struct kernfs_node *kn = inode->i_private;
317
318 return kernfs_xattr_get(kn, name, value, size);
319}
320
321static int kernfs_vfs_xattr_set(const struct xattr_handler *handler,
322 struct dentry *unused, struct inode *inode,
323 const char *suffix, const void *value,
324 size_t size, int flags)
325{
326 const char *name = xattr_full_name(handler, suffix);
327 struct kernfs_node *kn = inode->i_private;
328
329 return kernfs_xattr_set(kn, name, value, size, flags);
330}
331
332static int kernfs_vfs_user_xattr_add(struct kernfs_node *kn,
333 const char *full_name,
334 struct simple_xattrs *xattrs,
335 const void *value, size_t size, int flags)
336{
337 atomic_t *sz = &kn->iattr->user_xattr_size;
338 atomic_t *nr = &kn->iattr->nr_user_xattrs;
339 ssize_t removed_size;
340 int ret;
341
342 if (atomic_inc_return(nr) > KERNFS_MAX_USER_XATTRS) {
343 ret = -ENOSPC;
344 goto dec_count_out;
345 }
346
347 if (atomic_add_return(size, sz) > KERNFS_USER_XATTR_SIZE_LIMIT) {
348 ret = -ENOSPC;
349 goto dec_size_out;
350 }
351
352 ret = simple_xattr_set(xattrs, full_name, value, size, flags,
353 &removed_size);
354
355 if (!ret && removed_size >= 0)
356 size = removed_size;
357 else if (!ret)
358 return 0;
359dec_size_out:
360 atomic_sub(size, sz);
361dec_count_out:
362 atomic_dec(nr);
363 return ret;
364}
365
366static int kernfs_vfs_user_xattr_rm(struct kernfs_node *kn,
367 const char *full_name,
368 struct simple_xattrs *xattrs,
369 const void *value, size_t size, int flags)
370{
371 atomic_t *sz = &kn->iattr->user_xattr_size;
372 atomic_t *nr = &kn->iattr->nr_user_xattrs;
373 ssize_t removed_size;
374 int ret;
375
376 ret = simple_xattr_set(xattrs, full_name, value, size, flags,
377 &removed_size);
378
379 if (removed_size >= 0) {
380 atomic_sub(removed_size, sz);
381 atomic_dec(nr);
382 }
383
384 return ret;
385}
386
387static int kernfs_vfs_user_xattr_set(const struct xattr_handler *handler,
388 struct dentry *unused, struct inode *inode,
389 const char *suffix, const void *value,
390 size_t size, int flags)
391{
392 const char *full_name = xattr_full_name(handler, suffix);
393 struct kernfs_node *kn = inode->i_private;
394 struct kernfs_iattrs *attrs;
395
396 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_SUPPORT_USER_XATTR))
397 return -EOPNOTSUPP;
398
399 attrs = kernfs_iattrs(kn);
400 if (!attrs)
401 return -ENOMEM;
402
403 if (value)
404 return kernfs_vfs_user_xattr_add(kn, full_name, &attrs->xattrs,
405 value, size, flags);
406 else
407 return kernfs_vfs_user_xattr_rm(kn, full_name, &attrs->xattrs,
408 value, size, flags);
409
410}
411
412static const struct xattr_handler kernfs_trusted_xattr_handler = {
413 .prefix = XATTR_TRUSTED_PREFIX,
414 .get = kernfs_vfs_xattr_get,
415 .set = kernfs_vfs_xattr_set,
416};
417
418static const struct xattr_handler kernfs_security_xattr_handler = {
419 .prefix = XATTR_SECURITY_PREFIX,
420 .get = kernfs_vfs_xattr_get,
421 .set = kernfs_vfs_xattr_set,
422};
423
424static const struct xattr_handler kernfs_user_xattr_handler = {
425 .prefix = XATTR_USER_PREFIX,
426 .get = kernfs_vfs_xattr_get,
427 .set = kernfs_vfs_user_xattr_set,
428};
429
430const struct xattr_handler *kernfs_xattr_handlers[] = {
431 &kernfs_trusted_xattr_handler,
432 &kernfs_security_xattr_handler,
433 &kernfs_user_xattr_handler,
434 NULL
435};
diff --git a/fs/kernfs/kernfs-internal.h b/fs/kernfs/kernfs-internal.h
new file mode 100644
index 000000000..7ee97ef59
--- /dev/null
+++ b/fs/kernfs/kernfs-internal.h
@@ -0,0 +1,127 @@
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * fs/kernfs/kernfs-internal.h - kernfs internal header file
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <teheo@suse.de>
8 */
9
10#ifndef __KERNFS_INTERNAL_H
11#define __KERNFS_INTERNAL_H
12
13#include <linux/lockdep.h>
14#include <linux/fs.h>
15#include <linux/mutex.h>
16#include <linux/xattr.h>
17
18#include <linux/kernfs.h>
19#include <linux/fs_context.h>
20
21struct kernfs_iattrs {
22 kuid_t ia_uid;
23 kgid_t ia_gid;
24 struct timespec64 ia_atime;
25 struct timespec64 ia_mtime;
26 struct timespec64 ia_ctime;
27
28 struct simple_xattrs xattrs;
29 atomic_t nr_user_xattrs;
30 atomic_t user_xattr_size;
31};
32
33/* +1 to avoid triggering overflow warning when negating it */
34#define KN_DEACTIVATED_BIAS (INT_MIN + 1)
35
36/* KERNFS_TYPE_MASK and types are defined in include/linux/kernfs.h */
37
38/**
39 * kernfs_root - find out the kernfs_root a kernfs_node belongs to
40 * @kn: kernfs_node of interest
41 *
42 * Return the kernfs_root @kn belongs to.
43 */
44static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn)
45{
46 /* if parent exists, it's always a dir; otherwise, @sd is a dir */
47 if (kn->parent)
48 kn = kn->parent;
49 return kn->dir.root;
50}
51
52/*
53 * mount.c
54 */
55struct kernfs_super_info {
56 struct super_block *sb;
57
58 /*
59 * The root associated with this super_block. Each super_block is
60 * identified by the root and ns it's associated with.
61 */
62 struct kernfs_root *root;
63
64 /*
65 * Each sb is associated with one namespace tag, currently the
66 * network namespace of the task which mounted this kernfs
67 * instance. If multiple tags become necessary, make the following
68 * an array and compare kernfs_node tag against every entry.
69 */
70 const void *ns;
71
72 /* anchored at kernfs_root->supers, protected by kernfs_mutex */
73 struct list_head node;
74};
75#define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info))
76
77static inline struct kernfs_node *kernfs_dentry_node(struct dentry *dentry)
78{
79 if (d_really_is_negative(dentry))
80 return NULL;
81 return d_inode(dentry)->i_private;
82}
83
84extern const struct super_operations kernfs_sops;
85extern struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
86
87/*
88 * inode.c
89 */
90extern const struct xattr_handler *kernfs_xattr_handlers[];
91void kernfs_evict_inode(struct inode *inode);
92int kernfs_iop_permission(struct inode *inode, int mask);
93int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr);
94int kernfs_iop_getattr(const struct path *path, struct kstat *stat,
95 u32 request_mask, unsigned int query_flags);
96ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size);
97int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr);
98
99/*
100 * dir.c
101 */
102extern struct mutex kernfs_mutex;
103extern const struct dentry_operations kernfs_dops;
104extern const struct file_operations kernfs_dir_fops;
105extern const struct inode_operations kernfs_dir_iops;
106
107struct kernfs_node *kernfs_get_active(struct kernfs_node *kn);
108void kernfs_put_active(struct kernfs_node *kn);
109int kernfs_add_one(struct kernfs_node *kn);
110struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
111 const char *name, umode_t mode,
112 kuid_t uid, kgid_t gid,
113 unsigned flags);
114
115/*
116 * file.c
117 */
118extern const struct file_operations kernfs_file_fops;
119
120void kernfs_drain_open_files(struct kernfs_node *kn);
121
122/*
123 * symlink.c
124 */
125extern const struct inode_operations kernfs_symlink_iops;
126
127#endif /* __KERNFS_INTERNAL_H */
diff --git a/fs/kernfs/mount.c b/fs/kernfs/mount.c
new file mode 100644
index 000000000..9dc7e7a64
--- /dev/null
+++ b/fs/kernfs/mount.c
@@ -0,0 +1,397 @@
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/mount.c - kernfs mount implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/fs.h>
11#include <linux/mount.h>
12#include <linux/init.h>
13#include <linux/magic.h>
14#include <linux/slab.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/seq_file.h>
18#include <linux/exportfs.h>
19
20#include "kernfs-internal.h"
21
22struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache;
23
24static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
25{
26 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
27 struct kernfs_syscall_ops *scops = root->syscall_ops;
28
29 if (scops && scops->show_options)
30 return scops->show_options(sf, root);
31 return 0;
32}
33
34static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
35{
36 struct kernfs_node *node = kernfs_dentry_node(dentry);
37 struct kernfs_root *root = kernfs_root(node);
38 struct kernfs_syscall_ops *scops = root->syscall_ops;
39
40 if (scops && scops->show_path)
41 return scops->show_path(sf, node, root);
42
43 seq_dentry(sf, dentry, " \t\n\\");
44 return 0;
45}
46
47const struct super_operations kernfs_sops = {
48 .statfs = simple_statfs,
49 .drop_inode = generic_delete_inode,
50 .evict_inode = kernfs_evict_inode,
51
52 .show_options = kernfs_sop_show_options,
53 .show_path = kernfs_sop_show_path,
54};
55
56static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
57 struct inode *parent)
58{
59 struct kernfs_node *kn = inode->i_private;
60
61 if (*max_len < 2) {
62 *max_len = 2;
63 return FILEID_INVALID;
64 }
65
66 *max_len = 2;
67 *(u64 *)fh = kn->id;
68 return FILEID_KERNFS;
69}
70
71static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
72 struct fid *fid, int fh_len,
73 int fh_type, bool get_parent)
74{
75 struct kernfs_super_info *info = kernfs_info(sb);
76 struct kernfs_node *kn;
77 struct inode *inode;
78 u64 id;
79
80 if (fh_len < 2)
81 return NULL;
82
83 switch (fh_type) {
84 case FILEID_KERNFS:
85 id = *(u64 *)fid;
86 break;
87 case FILEID_INO32_GEN:
88 case FILEID_INO32_GEN_PARENT:
89 /*
90 * blk_log_action() exposes "LOW32,HIGH32" pair without
91 * type and userland can call us with generic fid
92 * constructed from them. Combine it back to ID. See
93 * blk_log_action().
94 */
95 id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
96 break;
97 default:
98 return NULL;
99 }
100
101 kn = kernfs_find_and_get_node_by_id(info->root, id);
102 if (!kn)
103 return ERR_PTR(-ESTALE);
104
105 if (get_parent) {
106 struct kernfs_node *parent;
107
108 parent = kernfs_get_parent(kn);
109 kernfs_put(kn);
110 kn = parent;
111 if (!kn)
112 return ERR_PTR(-ESTALE);
113 }
114
115 inode = kernfs_get_inode(sb, kn);
116 kernfs_put(kn);
117 if (!inode)
118 return ERR_PTR(-ESTALE);
119
120 return d_obtain_alias(inode);
121}
122
123static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
124 struct fid *fid, int fh_len,
125 int fh_type)
126{
127 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
128}
129
130static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
131 struct fid *fid, int fh_len,
132 int fh_type)
133{
134 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
135}
136
137static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
138{
139 struct kernfs_node *kn = kernfs_dentry_node(child);
140
141 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent));
142}
143
144static const struct export_operations kernfs_export_ops = {
145 .encode_fh = kernfs_encode_fh,
146 .fh_to_dentry = kernfs_fh_to_dentry,
147 .fh_to_parent = kernfs_fh_to_parent,
148 .get_parent = kernfs_get_parent_dentry,
149};
150
151/**
152 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
153 * @sb: the super_block in question
154 *
155 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one,
156 * %NULL is returned.
157 */
158struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
159{
160 if (sb->s_op == &kernfs_sops)
161 return kernfs_info(sb)->root;
162 return NULL;
163}
164
165/*
166 * find the next ancestor in the path down to @child, where @parent was the
167 * ancestor whose descendant we want to find.
168 *
169 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root
170 * node. If @parent is b, then we return the node for c.
171 * Passing in d as @parent is not ok.
172 */
173static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
174 struct kernfs_node *parent)
175{
176 if (child == parent) {
177 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
178 return NULL;
179 }
180
181 while (child->parent != parent) {
182 if (!child->parent)
183 return NULL;
184 child = child->parent;
185 }
186
187 return child;
188}
189
190/**
191 * kernfs_node_dentry - get a dentry for the given kernfs_node
192 * @kn: kernfs_node for which a dentry is needed
193 * @sb: the kernfs super_block
194 */
195struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
196 struct super_block *sb)
197{
198 struct dentry *dentry;
199 struct kernfs_node *knparent = NULL;
200
201 BUG_ON(sb->s_op != &kernfs_sops);
202
203 dentry = dget(sb->s_root);
204
205 /* Check if this is the root kernfs_node */
206 if (!kn->parent)
207 return dentry;
208
209 knparent = find_next_ancestor(kn, NULL);
210 if (WARN_ON(!knparent)) {
211 dput(dentry);
212 return ERR_PTR(-EINVAL);
213 }
214
215 do {
216 struct dentry *dtmp;
217 struct kernfs_node *kntmp;
218
219 if (kn == knparent)
220 return dentry;
221 kntmp = find_next_ancestor(kn, knparent);
222 if (WARN_ON(!kntmp)) {
223 dput(dentry);
224 return ERR_PTR(-EINVAL);
225 }
226 dtmp = lookup_positive_unlocked(kntmp->name, dentry,
227 strlen(kntmp->name));
228 dput(dentry);
229 if (IS_ERR(dtmp))
230 return dtmp;
231 knparent = kntmp;
232 dentry = dtmp;
233 } while (true);
234}
235
236static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
237{
238 struct kernfs_super_info *info = kernfs_info(sb);
239 struct inode *inode;
240 struct dentry *root;
241
242 info->sb = sb;
243 /* Userspace would break if executables or devices appear on sysfs */
244 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
245 sb->s_blocksize = PAGE_SIZE;
246 sb->s_blocksize_bits = PAGE_SHIFT;
247 sb->s_magic = kfc->magic;
248 sb->s_op = &kernfs_sops;
249 sb->s_xattr = kernfs_xattr_handlers;
250 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
251 sb->s_export_op = &kernfs_export_ops;
252 sb->s_time_gran = 1;
253
254 /* sysfs dentries and inodes don't require IO to create */
255 sb->s_shrink.seeks = 0;
256
257 /* get root inode, initialize and unlock it */
258 mutex_lock(&kernfs_mutex);
259 inode = kernfs_get_inode(sb, info->root->kn);
260 mutex_unlock(&kernfs_mutex);
261 if (!inode) {
262 pr_debug("kernfs: could not get root inode\n");
263 return -ENOMEM;
264 }
265
266 /* instantiate and link root dentry */
267 root = d_make_root(inode);
268 if (!root) {
269 pr_debug("%s: could not get root dentry!\n", __func__);
270 return -ENOMEM;
271 }
272 sb->s_root = root;
273 sb->s_d_op = &kernfs_dops;
274 return 0;
275}
276
277static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
278{
279 struct kernfs_super_info *sb_info = kernfs_info(sb);
280 struct kernfs_super_info *info = fc->s_fs_info;
281
282 return sb_info->root == info->root && sb_info->ns == info->ns;
283}
284
285static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
286{
287 struct kernfs_fs_context *kfc = fc->fs_private;
288
289 kfc->ns_tag = NULL;
290 return set_anon_super_fc(sb, fc);
291}
292
293/**
294 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
295 * @sb: super_block of interest
296 *
297 * Return the namespace tag associated with kernfs super_block @sb.
298 */
299const void *kernfs_super_ns(struct super_block *sb)
300{
301 struct kernfs_super_info *info = kernfs_info(sb);
302
303 return info->ns;
304}
305
306/**
307 * kernfs_get_tree - kernfs filesystem access/retrieval helper
308 * @fc: The filesystem context.
309 *
310 * This is to be called from each kernfs user's fs_context->ops->get_tree()
311 * implementation, which should set the specified ->@fs_type and ->@flags, and
312 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
313 * respectively.
314 */
315int kernfs_get_tree(struct fs_context *fc)
316{
317 struct kernfs_fs_context *kfc = fc->fs_private;
318 struct super_block *sb;
319 struct kernfs_super_info *info;
320 int error;
321
322 info = kzalloc(sizeof(*info), GFP_KERNEL);
323 if (!info)
324 return -ENOMEM;
325
326 info->root = kfc->root;
327 info->ns = kfc->ns_tag;
328 INIT_LIST_HEAD(&info->node);
329
330 fc->s_fs_info = info;
331 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
332 if (IS_ERR(sb))
333 return PTR_ERR(sb);
334
335 if (!sb->s_root) {
336 struct kernfs_super_info *info = kernfs_info(sb);
337
338 kfc->new_sb_created = true;
339
340 error = kernfs_fill_super(sb, kfc);
341 if (error) {
342 deactivate_locked_super(sb);
343 return error;
344 }
345 sb->s_flags |= SB_ACTIVE;
346
347 mutex_lock(&kernfs_mutex);
348 list_add(&info->node, &info->root->supers);
349 mutex_unlock(&kernfs_mutex);
350 }
351
352 fc->root = dget(sb->s_root);
353 return 0;
354}
355
356void kernfs_free_fs_context(struct fs_context *fc)
357{
358 /* Note that we don't deal with kfc->ns_tag here. */
359 kfree(fc->s_fs_info);
360 fc->s_fs_info = NULL;
361}
362
363/**
364 * kernfs_kill_sb - kill_sb for kernfs
365 * @sb: super_block being killed
366 *
367 * This can be used directly for file_system_type->kill_sb(). If a kernfs
368 * user needs extra cleanup, it can implement its own kill_sb() and call
369 * this function at the end.
370 */
371void kernfs_kill_sb(struct super_block *sb)
372{
373 struct kernfs_super_info *info = kernfs_info(sb);
374
375 mutex_lock(&kernfs_mutex);
376 list_del(&info->node);
377 mutex_unlock(&kernfs_mutex);
378
379 /*
380 * Remove the superblock from fs_supers/s_instances
381 * so we can't find it, before freeing kernfs_super_info.
382 */
383 kill_anon_super(sb);
384 kfree(info);
385}
386
387void __init kernfs_init(void)
388{
389 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
390 sizeof(struct kernfs_node),
391 0, SLAB_PANIC, NULL);
392
393 /* Creates slab cache for kernfs inode attributes */
394 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache",
395 sizeof(struct kernfs_iattrs),
396 0, SLAB_PANIC, NULL);
397}
diff --git a/fs/kernfs/symlink.c b/fs/kernfs/symlink.c
new file mode 100644
index 000000000..5432883d8
--- /dev/null
+++ b/fs/kernfs/symlink.c
@@ -0,0 +1,153 @@
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/symlink.c - kernfs symlink implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/fs.h>
11#include <linux/gfp.h>
12#include <linux/namei.h>
13
14#include "kernfs-internal.h"
15
16/**
17 * kernfs_create_link - create a symlink
18 * @parent: directory to create the symlink in
19 * @name: name of the symlink
20 * @target: target node for the symlink to point to
21 *
22 * Returns the created node on success, ERR_PTR() value on error.
23 * Ownership of the link matches ownership of the target.
24 */
25struct kernfs_node *kernfs_create_link(struct kernfs_node *parent,
26 const char *name,
27 struct kernfs_node *target)
28{
29 struct kernfs_node *kn;
30 int error;
31 kuid_t uid = GLOBAL_ROOT_UID;
32 kgid_t gid = GLOBAL_ROOT_GID;
33
34 if (target->iattr) {
35 uid = target->iattr->ia_uid;
36 gid = target->iattr->ia_gid;
37 }
38
39 kn = kernfs_new_node(parent, name, S_IFLNK|S_IRWXUGO, uid, gid,
40 KERNFS_LINK);
41 if (!kn)
42 return ERR_PTR(-ENOMEM);
43
44 if (kernfs_ns_enabled(parent))
45 kn->ns = target->ns;
46 kn->symlink.target_kn = target;
47 kernfs_get(target); /* ref owned by symlink */
48
49 error = kernfs_add_one(kn);
50 if (!error)
51 return kn;
52
53 kernfs_put(kn);
54 return ERR_PTR(error);
55}
56
57static int kernfs_get_target_path(struct kernfs_node *parent,
58 struct kernfs_node *target, char *path)
59{
60 struct kernfs_node *base, *kn;
61 char *s = path;
62 int len = 0;
63
64 /* go up to the root, stop at the base */
65 base = parent;
66 while (base->parent) {
67 kn = target->parent;
68 while (kn->parent && base != kn)
69 kn = kn->parent;
70
71 if (base == kn)
72 break;
73
74 if ((s - path) + 3 >= PATH_MAX)
75 return -ENAMETOOLONG;
76
77 strcpy(s, "../");
78 s += 3;
79 base = base->parent;
80 }
81
82 /* determine end of target string for reverse fillup */
83 kn = target;
84 while (kn->parent && kn != base) {
85 len += strlen(kn->name) + 1;
86 kn = kn->parent;
87 }
88
89 /* check limits */
90 if (len < 2)
91 return -EINVAL;
92 len--;
93 if ((s - path) + len >= PATH_MAX)
94 return -ENAMETOOLONG;
95
96 /* reverse fillup of target string from target to base */
97 kn = target;
98 while (kn->parent && kn != base) {
99 int slen = strlen(kn->name);
100
101 len -= slen;
102 memcpy(s + len, kn->name, slen);
103 if (len)
104 s[--len] = '/';
105
106 kn = kn->parent;
107 }
108
109 return 0;
110}
111
112static int kernfs_getlink(struct inode *inode, char *path)
113{
114 struct kernfs_node *kn = inode->i_private;
115 struct kernfs_node *parent = kn->parent;
116 struct kernfs_node *target = kn->symlink.target_kn;
117 int error;
118
119 mutex_lock(&kernfs_mutex);
120 error = kernfs_get_target_path(parent, target, path);
121 mutex_unlock(&kernfs_mutex);
122
123 return error;
124}
125
126static const char *kernfs_iop_get_link(struct dentry *dentry,
127 struct inode *inode,
128 struct delayed_call *done)
129{
130 char *body;
131 int error;
132
133 if (!dentry)
134 return ERR_PTR(-ECHILD);
135 body = kzalloc(PAGE_SIZE, GFP_KERNEL);
136 if (!body)
137 return ERR_PTR(-ENOMEM);
138 error = kernfs_getlink(inode, body);
139 if (unlikely(error < 0)) {
140 kfree(body);
141 return ERR_PTR(error);
142 }
143 set_delayed_call(done, kfree_link, body);
144 return body;
145}
146
147const struct inode_operations kernfs_symlink_iops = {
148 .listxattr = kernfs_iop_listxattr,
149 .get_link = kernfs_iop_get_link,
150 .setattr = kernfs_iop_setattr,
151 .getattr = kernfs_iop_getattr,
152 .permission = kernfs_iop_permission,
153};