diff options
author | 2025-03-08 22:04:20 +0800 | |
---|---|---|
committer | 2025-03-08 22:04:20 +0800 | |
commit | a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a (patch) | |
tree | 84f21bd0bf7071bc5fc7dd989e77d7ceb5476682 /include/math-emu/op-2.h | |
download | ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.tar.gz ohosKernel-a07bb8fd1299070229f0e8f3dcb57ffd5ef9870a.zip |
Initial commit: OpenHarmony-v4.0-ReleaseOpenHarmony-v4.0-Release
Diffstat (limited to 'include/math-emu/op-2.h')
-rw-r--r-- | include/math-emu/op-2.h | 605 |
1 files changed, 605 insertions, 0 deletions
diff --git a/include/math-emu/op-2.h b/include/math-emu/op-2.h new file mode 100644 index 000000000..244522b02 --- /dev/null +++ b/include/math-emu/op-2.h | |||
@@ -0,0 +1,605 @@ | |||
1 | /* Software floating-point emulation. | ||
2 | Basic two-word fraction declaration and manipulation. | ||
3 | Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. | ||
4 | This file is part of the GNU C Library. | ||
5 | Contributed by Richard Henderson (rth@cygnus.com), | ||
6 | Jakub Jelinek (jj@ultra.linux.cz), | ||
7 | David S. Miller (davem@redhat.com) and | ||
8 | Peter Maydell (pmaydell@chiark.greenend.org.uk). | ||
9 | |||
10 | The GNU C Library is free software; you can redistribute it and/or | ||
11 | modify it under the terms of the GNU Library General Public License as | ||
12 | published by the Free Software Foundation; either version 2 of the | ||
13 | License, or (at your option) any later version. | ||
14 | |||
15 | The GNU C Library is distributed in the hope that it will be useful, | ||
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
18 | Library General Public License for more details. | ||
19 | |||
20 | You should have received a copy of the GNU Library General Public | ||
21 | License along with the GNU C Library; see the file COPYING.LIB. If | ||
22 | not, write to the Free Software Foundation, Inc., | ||
23 | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | ||
24 | |||
25 | #ifndef __MATH_EMU_OP_2_H__ | ||
26 | #define __MATH_EMU_OP_2_H__ | ||
27 | |||
28 | #define _FP_FRAC_DECL_2(X) _FP_W_TYPE X##_f0 = 0, X##_f1 = 0 | ||
29 | #define _FP_FRAC_COPY_2(D,S) (D##_f0 = S##_f0, D##_f1 = S##_f1) | ||
30 | #define _FP_FRAC_SET_2(X,I) __FP_FRAC_SET_2(X, I) | ||
31 | #define _FP_FRAC_HIGH_2(X) (X##_f1) | ||
32 | #define _FP_FRAC_LOW_2(X) (X##_f0) | ||
33 | #define _FP_FRAC_WORD_2(X,w) (X##_f##w) | ||
34 | #define _FP_FRAC_SLL_2(X, N) ( \ | ||
35 | (void) (((N) < _FP_W_TYPE_SIZE) \ | ||
36 | ? ({ \ | ||
37 | if (__builtin_constant_p(N) && (N) == 1) { \ | ||
38 | X##_f1 = X##_f1 + X##_f1 + \ | ||
39 | (((_FP_WS_TYPE) (X##_f0)) < 0); \ | ||
40 | X##_f0 += X##_f0; \ | ||
41 | } else { \ | ||
42 | X##_f1 = X##_f1 << (N) | X##_f0 >> \ | ||
43 | (_FP_W_TYPE_SIZE - (N)); \ | ||
44 | X##_f0 <<= (N); \ | ||
45 | } \ | ||
46 | 0; \ | ||
47 | }) \ | ||
48 | : ({ \ | ||
49 | X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \ | ||
50 | X##_f0 = 0; \ | ||
51 | }))) | ||
52 | |||
53 | |||
54 | #define _FP_FRAC_SRL_2(X, N) ( \ | ||
55 | (void) (((N) < _FP_W_TYPE_SIZE) \ | ||
56 | ? ({ \ | ||
57 | X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \ | ||
58 | X##_f1 >>= (N); \ | ||
59 | }) \ | ||
60 | : ({ \ | ||
61 | X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \ | ||
62 | X##_f1 = 0; \ | ||
63 | }))) | ||
64 | |||
65 | |||
66 | /* Right shift with sticky-lsb. */ | ||
67 | #define _FP_FRAC_SRS_2(X, N, sz) ( \ | ||
68 | (void) (((N) < _FP_W_TYPE_SIZE) \ | ||
69 | ? ({ \ | ||
70 | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) \ | ||
71 | | (__builtin_constant_p(N) && (N) == 1 \ | ||
72 | ? X##_f0 & 1 \ | ||
73 | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \ | ||
74 | X##_f1 >>= (N); \ | ||
75 | }) \ | ||
76 | : ({ \ | ||
77 | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) \ | ||
78 | | ((((N) == _FP_W_TYPE_SIZE \ | ||
79 | ? 0 \ | ||
80 | : (X##_f1 << (2*_FP_W_TYPE_SIZE - (N)))) \ | ||
81 | | X##_f0) != 0)); \ | ||
82 | X##_f1 = 0; \ | ||
83 | }))) | ||
84 | |||
85 | #define _FP_FRAC_ADDI_2(X,I) \ | ||
86 | __FP_FRAC_ADDI_2(X##_f1, X##_f0, I) | ||
87 | |||
88 | #define _FP_FRAC_ADD_2(R,X,Y) \ | ||
89 | __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | ||
90 | |||
91 | #define _FP_FRAC_SUB_2(R,X,Y) \ | ||
92 | __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | ||
93 | |||
94 | #define _FP_FRAC_DEC_2(X,Y) \ | ||
95 | __FP_FRAC_DEC_2(X##_f1, X##_f0, Y##_f1, Y##_f0) | ||
96 | |||
97 | #define _FP_FRAC_CLZ_2(R,X) \ | ||
98 | do { \ | ||
99 | if (X##_f1) \ | ||
100 | __FP_CLZ(R,X##_f1); \ | ||
101 | else \ | ||
102 | { \ | ||
103 | __FP_CLZ(R,X##_f0); \ | ||
104 | R += _FP_W_TYPE_SIZE; \ | ||
105 | } \ | ||
106 | } while(0) | ||
107 | |||
108 | /* Predicates */ | ||
109 | #define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE)X##_f1 < 0) | ||
110 | #define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0) | ||
111 | #define _FP_FRAC_OVERP_2(fs,X) (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs) | ||
112 | #define _FP_FRAC_CLEAR_OVERP_2(fs,X) (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs) | ||
113 | #define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0) | ||
114 | #define _FP_FRAC_GT_2(X, Y) \ | ||
115 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) | ||
116 | #define _FP_FRAC_GE_2(X, Y) \ | ||
117 | (X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) | ||
118 | |||
119 | #define _FP_ZEROFRAC_2 0, 0 | ||
120 | #define _FP_MINFRAC_2 0, 1 | ||
121 | #define _FP_MAXFRAC_2 (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0) | ||
122 | |||
123 | /* | ||
124 | * Internals | ||
125 | */ | ||
126 | |||
127 | #define __FP_FRAC_SET_2(X,I1,I0) (X##_f0 = I0, X##_f1 = I1) | ||
128 | |||
129 | #define __FP_CLZ_2(R, xh, xl) \ | ||
130 | do { \ | ||
131 | if (xh) \ | ||
132 | __FP_CLZ(R,xh); \ | ||
133 | else \ | ||
134 | { \ | ||
135 | __FP_CLZ(R,xl); \ | ||
136 | R += _FP_W_TYPE_SIZE; \ | ||
137 | } \ | ||
138 | } while(0) | ||
139 | |||
140 | #if 0 | ||
141 | |||
142 | #ifndef __FP_FRAC_ADDI_2 | ||
143 | #define __FP_FRAC_ADDI_2(xh, xl, i) \ | ||
144 | (xh += ((xl += i) < i)) | ||
145 | #endif | ||
146 | #ifndef __FP_FRAC_ADD_2 | ||
147 | #define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \ | ||
148 | (rh = xh + yh + ((rl = xl + yl) < xl)) | ||
149 | #endif | ||
150 | #ifndef __FP_FRAC_SUB_2 | ||
151 | #define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \ | ||
152 | (rh = xh - yh - ((rl = xl - yl) > xl)) | ||
153 | #endif | ||
154 | #ifndef __FP_FRAC_DEC_2 | ||
155 | #define __FP_FRAC_DEC_2(xh, xl, yh, yl) \ | ||
156 | do { \ | ||
157 | UWtype _t = xl; \ | ||
158 | xh -= yh + ((xl -= yl) > _t); \ | ||
159 | } while (0) | ||
160 | #endif | ||
161 | |||
162 | #else | ||
163 | |||
164 | #undef __FP_FRAC_ADDI_2 | ||
165 | #define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa(xh, xl, xh, xl, 0, i) | ||
166 | #undef __FP_FRAC_ADD_2 | ||
167 | #define __FP_FRAC_ADD_2 add_ssaaaa | ||
168 | #undef __FP_FRAC_SUB_2 | ||
169 | #define __FP_FRAC_SUB_2 sub_ddmmss | ||
170 | #undef __FP_FRAC_DEC_2 | ||
171 | #define __FP_FRAC_DEC_2(xh, xl, yh, yl) sub_ddmmss(xh, xl, xh, xl, yh, yl) | ||
172 | |||
173 | #endif | ||
174 | |||
175 | /* | ||
176 | * Unpack the raw bits of a native fp value. Do not classify or | ||
177 | * normalize the data. | ||
178 | */ | ||
179 | |||
180 | #define _FP_UNPACK_RAW_2(fs, X, val) \ | ||
181 | do { \ | ||
182 | union _FP_UNION_##fs _flo; _flo.flt = (val); \ | ||
183 | \ | ||
184 | X##_f0 = _flo.bits.frac0; \ | ||
185 | X##_f1 = _flo.bits.frac1; \ | ||
186 | X##_e = _flo.bits.exp; \ | ||
187 | X##_s = _flo.bits.sign; \ | ||
188 | } while (0) | ||
189 | |||
190 | #define _FP_UNPACK_RAW_2_P(fs, X, val) \ | ||
191 | do { \ | ||
192 | union _FP_UNION_##fs *_flo = \ | ||
193 | (union _FP_UNION_##fs *)(val); \ | ||
194 | \ | ||
195 | X##_f0 = _flo->bits.frac0; \ | ||
196 | X##_f1 = _flo->bits.frac1; \ | ||
197 | X##_e = _flo->bits.exp; \ | ||
198 | X##_s = _flo->bits.sign; \ | ||
199 | } while (0) | ||
200 | |||
201 | |||
202 | /* | ||
203 | * Repack the raw bits of a native fp value. | ||
204 | */ | ||
205 | |||
206 | #define _FP_PACK_RAW_2(fs, val, X) \ | ||
207 | do { \ | ||
208 | union _FP_UNION_##fs _flo; \ | ||
209 | \ | ||
210 | _flo.bits.frac0 = X##_f0; \ | ||
211 | _flo.bits.frac1 = X##_f1; \ | ||
212 | _flo.bits.exp = X##_e; \ | ||
213 | _flo.bits.sign = X##_s; \ | ||
214 | \ | ||
215 | (val) = _flo.flt; \ | ||
216 | } while (0) | ||
217 | |||
218 | #define _FP_PACK_RAW_2_P(fs, val, X) \ | ||
219 | do { \ | ||
220 | union _FP_UNION_##fs *_flo = \ | ||
221 | (union _FP_UNION_##fs *)(val); \ | ||
222 | \ | ||
223 | _flo->bits.frac0 = X##_f0; \ | ||
224 | _flo->bits.frac1 = X##_f1; \ | ||
225 | _flo->bits.exp = X##_e; \ | ||
226 | _flo->bits.sign = X##_s; \ | ||
227 | } while (0) | ||
228 | |||
229 | |||
230 | /* | ||
231 | * Multiplication algorithms: | ||
232 | */ | ||
233 | |||
234 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ | ||
235 | |||
236 | #define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit) \ | ||
237 | do { \ | ||
238 | _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \ | ||
239 | \ | ||
240 | doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \ | ||
241 | doit(_b_f1, _b_f0, X##_f0, Y##_f1); \ | ||
242 | doit(_c_f1, _c_f0, X##_f1, Y##_f0); \ | ||
243 | doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1); \ | ||
244 | \ | ||
245 | __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ | ||
246 | _FP_FRAC_WORD_4(_z,1), 0, _b_f1, _b_f0, \ | ||
247 | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ | ||
248 | _FP_FRAC_WORD_4(_z,1)); \ | ||
249 | __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ | ||
250 | _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0, \ | ||
251 | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ | ||
252 | _FP_FRAC_WORD_4(_z,1)); \ | ||
253 | \ | ||
254 | /* Normalize since we know where the msb of the multiplicands \ | ||
255 | were (bit B), we know that the msb of the of the product is \ | ||
256 | at either 2B or 2B-1. */ \ | ||
257 | _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \ | ||
258 | R##_f0 = _FP_FRAC_WORD_4(_z,0); \ | ||
259 | R##_f1 = _FP_FRAC_WORD_4(_z,1); \ | ||
260 | } while (0) | ||
261 | |||
262 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. | ||
263 | Do only 3 multiplications instead of four. This one is for machines | ||
264 | where multiplication is much more expensive than subtraction. */ | ||
265 | |||
266 | #define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit) \ | ||
267 | do { \ | ||
268 | _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \ | ||
269 | _FP_W_TYPE _d; \ | ||
270 | int _c1, _c2; \ | ||
271 | \ | ||
272 | _b_f0 = X##_f0 + X##_f1; \ | ||
273 | _c1 = _b_f0 < X##_f0; \ | ||
274 | _b_f1 = Y##_f0 + Y##_f1; \ | ||
275 | _c2 = _b_f1 < Y##_f0; \ | ||
276 | doit(_d, _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \ | ||
277 | doit(_FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1), _b_f0, _b_f1); \ | ||
278 | doit(_c_f1, _c_f0, X##_f1, Y##_f1); \ | ||
279 | \ | ||
280 | _b_f0 &= -_c2; \ | ||
281 | _b_f1 &= -_c1; \ | ||
282 | __FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ | ||
283 | _FP_FRAC_WORD_4(_z,1), (_c1 & _c2), 0, _d, \ | ||
284 | 0, _FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1)); \ | ||
285 | __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ | ||
286 | _b_f0); \ | ||
287 | __FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ | ||
288 | _b_f1); \ | ||
289 | __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ | ||
290 | _FP_FRAC_WORD_4(_z,1), \ | ||
291 | 0, _d, _FP_FRAC_WORD_4(_z,0)); \ | ||
292 | __FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ | ||
293 | _FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0); \ | ||
294 | __FP_FRAC_ADD_2(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), \ | ||
295 | _c_f1, _c_f0, \ | ||
296 | _FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2)); \ | ||
297 | \ | ||
298 | /* Normalize since we know where the msb of the multiplicands \ | ||
299 | were (bit B), we know that the msb of the of the product is \ | ||
300 | at either 2B or 2B-1. */ \ | ||
301 | _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \ | ||
302 | R##_f0 = _FP_FRAC_WORD_4(_z,0); \ | ||
303 | R##_f1 = _FP_FRAC_WORD_4(_z,1); \ | ||
304 | } while (0) | ||
305 | |||
306 | #define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y) \ | ||
307 | do { \ | ||
308 | _FP_FRAC_DECL_4(_z); \ | ||
309 | _FP_W_TYPE _x[2], _y[2]; \ | ||
310 | _x[0] = X##_f0; _x[1] = X##_f1; \ | ||
311 | _y[0] = Y##_f0; _y[1] = Y##_f1; \ | ||
312 | \ | ||
313 | mpn_mul_n(_z_f, _x, _y, 2); \ | ||
314 | \ | ||
315 | /* Normalize since we know where the msb of the multiplicands \ | ||
316 | were (bit B), we know that the msb of the of the product is \ | ||
317 | at either 2B or 2B-1. */ \ | ||
318 | _FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \ | ||
319 | R##_f0 = _z_f[0]; \ | ||
320 | R##_f1 = _z_f[1]; \ | ||
321 | } while (0) | ||
322 | |||
323 | /* Do at most 120x120=240 bits multiplication using double floating | ||
324 | point multiplication. This is useful if floating point | ||
325 | multiplication has much bigger throughput than integer multiply. | ||
326 | It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits | ||
327 | between 106 and 120 only. | ||
328 | Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set. | ||
329 | SETFETZ is a macro which will disable all FPU exceptions and set rounding | ||
330 | towards zero, RESETFE should optionally reset it back. */ | ||
331 | |||
332 | #define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \ | ||
333 | do { \ | ||
334 | static const double _const[] = { \ | ||
335 | /* 2^-24 */ 5.9604644775390625e-08, \ | ||
336 | /* 2^-48 */ 3.5527136788005009e-15, \ | ||
337 | /* 2^-72 */ 2.1175823681357508e-22, \ | ||
338 | /* 2^-96 */ 1.2621774483536189e-29, \ | ||
339 | /* 2^28 */ 2.68435456e+08, \ | ||
340 | /* 2^4 */ 1.600000e+01, \ | ||
341 | /* 2^-20 */ 9.5367431640625e-07, \ | ||
342 | /* 2^-44 */ 5.6843418860808015e-14, \ | ||
343 | /* 2^-68 */ 3.3881317890172014e-21, \ | ||
344 | /* 2^-92 */ 2.0194839173657902e-28, \ | ||
345 | /* 2^-116 */ 1.2037062152420224e-35}; \ | ||
346 | double _a240, _b240, _c240, _d240, _e240, _f240, \ | ||
347 | _g240, _h240, _i240, _j240, _k240; \ | ||
348 | union { double d; UDItype i; } _l240, _m240, _n240, _o240, \ | ||
349 | _p240, _q240, _r240, _s240; \ | ||
350 | UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0; \ | ||
351 | \ | ||
352 | if (wfracbits < 106 || wfracbits > 120) \ | ||
353 | abort(); \ | ||
354 | \ | ||
355 | setfetz; \ | ||
356 | \ | ||
357 | _e240 = (double)(long)(X##_f0 & 0xffffff); \ | ||
358 | _j240 = (double)(long)(Y##_f0 & 0xffffff); \ | ||
359 | _d240 = (double)(long)((X##_f0 >> 24) & 0xffffff); \ | ||
360 | _i240 = (double)(long)((Y##_f0 >> 24) & 0xffffff); \ | ||
361 | _c240 = (double)(long)(((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \ | ||
362 | _h240 = (double)(long)(((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \ | ||
363 | _b240 = (double)(long)((X##_f1 >> 8) & 0xffffff); \ | ||
364 | _g240 = (double)(long)((Y##_f1 >> 8) & 0xffffff); \ | ||
365 | _a240 = (double)(long)(X##_f1 >> 32); \ | ||
366 | _f240 = (double)(long)(Y##_f1 >> 32); \ | ||
367 | _e240 *= _const[3]; \ | ||
368 | _j240 *= _const[3]; \ | ||
369 | _d240 *= _const[2]; \ | ||
370 | _i240 *= _const[2]; \ | ||
371 | _c240 *= _const[1]; \ | ||
372 | _h240 *= _const[1]; \ | ||
373 | _b240 *= _const[0]; \ | ||
374 | _g240 *= _const[0]; \ | ||
375 | _s240.d = _e240*_j240;\ | ||
376 | _r240.d = _d240*_j240 + _e240*_i240;\ | ||
377 | _q240.d = _c240*_j240 + _d240*_i240 + _e240*_h240;\ | ||
378 | _p240.d = _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240;\ | ||
379 | _o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240;\ | ||
380 | _n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240; \ | ||
381 | _m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240; \ | ||
382 | _l240.d = _a240*_g240 + _b240*_f240; \ | ||
383 | _k240 = _a240*_f240; \ | ||
384 | _r240.d += _s240.d; \ | ||
385 | _q240.d += _r240.d; \ | ||
386 | _p240.d += _q240.d; \ | ||
387 | _o240.d += _p240.d; \ | ||
388 | _n240.d += _o240.d; \ | ||
389 | _m240.d += _n240.d; \ | ||
390 | _l240.d += _m240.d; \ | ||
391 | _k240 += _l240.d; \ | ||
392 | _s240.d -= ((_const[10]+_s240.d)-_const[10]); \ | ||
393 | _r240.d -= ((_const[9]+_r240.d)-_const[9]); \ | ||
394 | _q240.d -= ((_const[8]+_q240.d)-_const[8]); \ | ||
395 | _p240.d -= ((_const[7]+_p240.d)-_const[7]); \ | ||
396 | _o240.d += _const[7]; \ | ||
397 | _n240.d += _const[6]; \ | ||
398 | _m240.d += _const[5]; \ | ||
399 | _l240.d += _const[4]; \ | ||
400 | if (_s240.d != 0.0) _y240 = 1; \ | ||
401 | if (_r240.d != 0.0) _y240 = 1; \ | ||
402 | if (_q240.d != 0.0) _y240 = 1; \ | ||
403 | if (_p240.d != 0.0) _y240 = 1; \ | ||
404 | _t240 = (DItype)_k240; \ | ||
405 | _u240 = _l240.i; \ | ||
406 | _v240 = _m240.i; \ | ||
407 | _w240 = _n240.i; \ | ||
408 | _x240 = _o240.i; \ | ||
409 | R##_f1 = (_t240 << (128 - (wfracbits - 1))) \ | ||
410 | | ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104)); \ | ||
411 | R##_f0 = ((_u240 & 0xffffff) << (168 - (wfracbits - 1))) \ | ||
412 | | ((_v240 & 0xffffff) << (144 - (wfracbits - 1))) \ | ||
413 | | ((_w240 & 0xffffff) << (120 - (wfracbits - 1))) \ | ||
414 | | ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96)) \ | ||
415 | | _y240; \ | ||
416 | resetfe; \ | ||
417 | } while (0) | ||
418 | |||
419 | /* | ||
420 | * Division algorithms: | ||
421 | */ | ||
422 | |||
423 | #define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \ | ||
424 | do { \ | ||
425 | _FP_W_TYPE _n_f2, _n_f1, _n_f0, _r_f1, _r_f0, _m_f1, _m_f0; \ | ||
426 | if (_FP_FRAC_GT_2(X, Y)) \ | ||
427 | { \ | ||
428 | _n_f2 = X##_f1 >> 1; \ | ||
429 | _n_f1 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \ | ||
430 | _n_f0 = X##_f0 << (_FP_W_TYPE_SIZE - 1); \ | ||
431 | } \ | ||
432 | else \ | ||
433 | { \ | ||
434 | R##_e--; \ | ||
435 | _n_f2 = X##_f1; \ | ||
436 | _n_f1 = X##_f0; \ | ||
437 | _n_f0 = 0; \ | ||
438 | } \ | ||
439 | \ | ||
440 | /* Normalize, i.e. make the most significant bit of the \ | ||
441 | denominator set. */ \ | ||
442 | _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs); \ | ||
443 | \ | ||
444 | udiv_qrnnd(R##_f1, _r_f1, _n_f2, _n_f1, Y##_f1); \ | ||
445 | umul_ppmm(_m_f1, _m_f0, R##_f1, Y##_f0); \ | ||
446 | _r_f0 = _n_f0; \ | ||
447 | if (_FP_FRAC_GT_2(_m, _r)) \ | ||
448 | { \ | ||
449 | R##_f1--; \ | ||
450 | _FP_FRAC_ADD_2(_r, Y, _r); \ | ||
451 | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ | ||
452 | { \ | ||
453 | R##_f1--; \ | ||
454 | _FP_FRAC_ADD_2(_r, Y, _r); \ | ||
455 | } \ | ||
456 | } \ | ||
457 | _FP_FRAC_DEC_2(_r, _m); \ | ||
458 | \ | ||
459 | if (_r_f1 == Y##_f1) \ | ||
460 | { \ | ||
461 | /* This is a special case, not an optimization \ | ||
462 | (_r/Y##_f1 would not fit into UWtype). \ | ||
463 | As _r is guaranteed to be < Y, R##_f0 can be either \ | ||
464 | (UWtype)-1 or (UWtype)-2. But as we know what kind \ | ||
465 | of bits it is (sticky, guard, round), we don't care. \ | ||
466 | We also don't care what the reminder is, because the \ | ||
467 | guard bit will be set anyway. -jj */ \ | ||
468 | R##_f0 = -1; \ | ||
469 | } \ | ||
470 | else \ | ||
471 | { \ | ||
472 | udiv_qrnnd(R##_f0, _r_f1, _r_f1, _r_f0, Y##_f1); \ | ||
473 | umul_ppmm(_m_f1, _m_f0, R##_f0, Y##_f0); \ | ||
474 | _r_f0 = 0; \ | ||
475 | if (_FP_FRAC_GT_2(_m, _r)) \ | ||
476 | { \ | ||
477 | R##_f0--; \ | ||
478 | _FP_FRAC_ADD_2(_r, Y, _r); \ | ||
479 | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ | ||
480 | { \ | ||
481 | R##_f0--; \ | ||
482 | _FP_FRAC_ADD_2(_r, Y, _r); \ | ||
483 | } \ | ||
484 | } \ | ||
485 | if (!_FP_FRAC_EQ_2(_r, _m)) \ | ||
486 | R##_f0 |= _FP_WORK_STICKY; \ | ||
487 | } \ | ||
488 | } while (0) | ||
489 | |||
490 | |||
491 | #define _FP_DIV_MEAT_2_gmp(fs, R, X, Y) \ | ||
492 | do { \ | ||
493 | _FP_W_TYPE _x[4], _y[2], _z[4]; \ | ||
494 | _y[0] = Y##_f0; _y[1] = Y##_f1; \ | ||
495 | _x[0] = _x[3] = 0; \ | ||
496 | if (_FP_FRAC_GT_2(X, Y)) \ | ||
497 | { \ | ||
498 | R##_e++; \ | ||
499 | _x[1] = (X##_f0 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE) | \ | ||
500 | X##_f1 >> (_FP_W_TYPE_SIZE - \ | ||
501 | (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE))); \ | ||
502 | _x[2] = X##_f1 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE); \ | ||
503 | } \ | ||
504 | else \ | ||
505 | { \ | ||
506 | _x[1] = (X##_f0 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE) | \ | ||
507 | X##_f1 >> (_FP_W_TYPE_SIZE - \ | ||
508 | (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE))); \ | ||
509 | _x[2] = X##_f1 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE); \ | ||
510 | } \ | ||
511 | \ | ||
512 | (void) mpn_divrem (_z, 0, _x, 4, _y, 2); \ | ||
513 | R##_f1 = _z[1]; \ | ||
514 | R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0); \ | ||
515 | } while (0) | ||
516 | |||
517 | |||
518 | /* | ||
519 | * Square root algorithms: | ||
520 | * We have just one right now, maybe Newton approximation | ||
521 | * should be added for those machines where division is fast. | ||
522 | */ | ||
523 | |||
524 | #define _FP_SQRT_MEAT_2(R, S, T, X, q) \ | ||
525 | do { \ | ||
526 | while (q) \ | ||
527 | { \ | ||
528 | T##_f1 = S##_f1 + q; \ | ||
529 | if (T##_f1 <= X##_f1) \ | ||
530 | { \ | ||
531 | S##_f1 = T##_f1 + q; \ | ||
532 | X##_f1 -= T##_f1; \ | ||
533 | R##_f1 += q; \ | ||
534 | } \ | ||
535 | _FP_FRAC_SLL_2(X, 1); \ | ||
536 | q >>= 1; \ | ||
537 | } \ | ||
538 | q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ | ||
539 | while (q != _FP_WORK_ROUND) \ | ||
540 | { \ | ||
541 | T##_f0 = S##_f0 + q; \ | ||
542 | T##_f1 = S##_f1; \ | ||
543 | if (T##_f1 < X##_f1 || \ | ||
544 | (T##_f1 == X##_f1 && T##_f0 <= X##_f0)) \ | ||
545 | { \ | ||
546 | S##_f0 = T##_f0 + q; \ | ||
547 | S##_f1 += (T##_f0 > S##_f0); \ | ||
548 | _FP_FRAC_DEC_2(X, T); \ | ||
549 | R##_f0 += q; \ | ||
550 | } \ | ||
551 | _FP_FRAC_SLL_2(X, 1); \ | ||
552 | q >>= 1; \ | ||
553 | } \ | ||
554 | if (X##_f0 | X##_f1) \ | ||
555 | { \ | ||
556 | if (S##_f1 < X##_f1 || \ | ||
557 | (S##_f1 == X##_f1 && S##_f0 < X##_f0)) \ | ||
558 | R##_f0 |= _FP_WORK_ROUND; \ | ||
559 | R##_f0 |= _FP_WORK_STICKY; \ | ||
560 | } \ | ||
561 | } while (0) | ||
562 | |||
563 | |||
564 | /* | ||
565 | * Assembly/disassembly for converting to/from integral types. | ||
566 | * No shifting or overflow handled here. | ||
567 | */ | ||
568 | |||
569 | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \ | ||
570 | (void) (((rsize) <= _FP_W_TYPE_SIZE) \ | ||
571 | ? ({ (r) = X##_f0; }) \ | ||
572 | : ({ \ | ||
573 | (r) = X##_f1; \ | ||
574 | (r) <<= _FP_W_TYPE_SIZE; \ | ||
575 | (r) += X##_f0; \ | ||
576 | })) | ||
577 | |||
578 | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \ | ||
579 | do { \ | ||
580 | X##_f0 = r; \ | ||
581 | X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ | ||
582 | } while (0) | ||
583 | |||
584 | /* | ||
585 | * Convert FP values between word sizes | ||
586 | */ | ||
587 | |||
588 | #define _FP_FRAC_CONV_1_2(dfs, sfs, D, S) \ | ||
589 | do { \ | ||
590 | if (S##_c != FP_CLS_NAN) \ | ||
591 | _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ | ||
592 | _FP_WFRACBITS_##sfs); \ | ||
593 | else \ | ||
594 | _FP_FRAC_SRL_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \ | ||
595 | D##_f = S##_f0; \ | ||
596 | } while (0) | ||
597 | |||
598 | #define _FP_FRAC_CONV_2_1(dfs, sfs, D, S) \ | ||
599 | do { \ | ||
600 | D##_f0 = S##_f; \ | ||
601 | D##_f1 = 0; \ | ||
602 | _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ | ||
603 | } while (0) | ||
604 | |||
605 | #endif | ||